

www.ti.com

Available to industrial grade temperature

Available to Standard Microcircuit Drawing

100307

100307 Low Power Quint Exclusive OR/NOR Gate

Check for Samples: 100307

•

range

٥

- (SMD) 5962-9459001

FEATURES

- Low Power Operation .
- 2000V ESD protection
- Pin/function compatible with 100107
- Voltage compensated operating range = -4.2V to -5.7V

DESCRIPTION

The 100307 is monolithic quint exclusive-OR/NOR gate. The Function output is the wire-OR of all five exclusive-OR outputs. All inputs have 50 kΩ pull-down resistors.

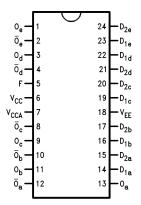
0 D١ D24 õa Ob Dir D₂F Ōb Dic Oc D2/ ōc Od D_{1c} Dac \overline{O}_d 0_ D.

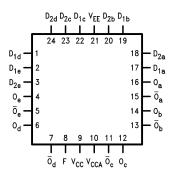
D₂

Logic Equation

 $F = (D_{1a} + D_{2a}) + (D_{1b} + D_{2b}) + (D_{1c} + D_{2c}) + (D_{1d} + D_{2d}) + (D_{1e} + D_{2e}).$

Pin Names	Description				
D _{na} -D _{ne}	Data Inputs				
F	Function Output				
O _a –O _e	Data Outputs				
$\begin{array}{c} O_a-O_e\\ \hline \overline{O}_a-\overline{O}_e \end{array}$	Complementary				
	Data Outputs				


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.


Connection Diagram

SNOS121-OCTOBER 2009

Figure 1. 24-Pin DIP

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)

Above which the useful life may be impaired. ⁽¹⁾	
Storage Temperature (T _{STG})	−65°C to +150°C
Maximum Junction Temperature (T _J)	
Ceramic	+175°C
Plastic	+150°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V
Output Current (DC Output HIGH)	-50 mA
ESD ⁽²⁾	≥2000V

(1) Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

(2) ESD testing conforms to MIL-STD-883, Method 3015.

Recommended OperatingConditions

Case Temperature (T _C)	
Military	−55°C to +125°C
Supply Voltage (V _{EE})	-5.7V to -4.2V

100307

www.ti.com

Military Version DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C

Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes
V _{OH}	Output HIGH Voltage	-1025	-870	mV	0°C to +125°C	$V_{IN} = V_{IH}$ (Max) or V_{IL} (Min)	Loading with 50Ω to −2.0V	*(1)(2)(3)
		-1085	-870	mV	-55°C			
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to +125°C			
		-1830	-1555	mV	-55°C			
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to +125°C	$V_{IN} = V_{IH}$ (Min) or V_{IL} (Max)	Loading with 50Ω0 to −2.0V	(1)(2)(3)
		-1085		mV	-55°C			
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to +125°C			
			-1555	mV	-55°C			
V _{IH}	Input HIGH Voltage	-1165	-870	mV	−55°C to +125°C	Guaranteed HIGH Signal for All Inputs		(1) (2) (3) (4)
V _{IL}	Input LOW Voltage	-1830	-1475	mV	−55°C to +125°C	Guaranteed LOW Signal for All Inputs		(1)(2)(3)(4)
I _{IL}	Input LOW Current	0.50		μA	−55°C to +125°C	$V_{EE} = -4.2V V_{IN} = V_{IL}$ (Min)		(1)(2)(3)
IIH	Input High Current			V _{EE} = -5.7V V _{IN} =		(1)(2)(3)		
	D _{2a} -D _{2e}		250	μA	0°C to +125°C	V _{IH} (Max)		
	D _{1a} -D _{1e}		350					
	D _{2a} -D _{2e}		350	μA	-55°C			
	D _{1a} -D _{1e}		500					
I _{EE}	Power Supply Current	-75	-25	mA	−55°C to +125°C	Inputs Open		(1)(2)(3)

(1) Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

(2) ESD testing conforms to MIL-STD-883, Method 3015.

(3) F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

(4) Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2 3, 7, and 8.

SNOS121-OCTOBER 2009

www.ti.com

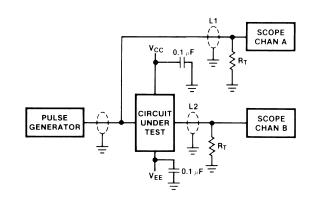
AC Electrical Characteristics

 $V_{FF} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbo I	Parameter	T _C = −55°C		T _C = +25°C		T _C = +125°C		11::::	Conditions	Natas
		Min	Max	Min	Мах	Min	Max	Units	Conditions	Notes
t _{PLH} , t _{PHL}	Propagation Delay D_{2a} - D_{2e} to O, O	0.30	2.10	0.40	1.90	0.40	2.40	ns	Figure 3 Figure 4	*(1)(2)(3)
t _{PLH} , t _{PHL}	Propagation Delay D_{1a} - D_{1e} to O, O	0.30	1.90	0.40	1.80	0.40	2.20	ns		
t _{PLH} , t _{PHL}	Propagation Delay Data to F	0.80	2.90	0.90	2.80	0.90	3.40	ns		
t _{TLH} , t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.20	1.70	0.30	1.60	0.20	1.70	ns		*(4)

(1) Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

(2) ESD testing conforms to MIL-STD-883, Method 3015.


(3) F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

(4) Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2 3, 7, and 8.

www.ti.com

Test Circuitry

Notes:

 $\begin{array}{l} \mathsf{V}_{CC}, \ \mathsf{V}_{CCA} = +2\mathsf{V}, \ \mathsf{V}_{EE} = -2.5\mathsf{V} \\ \mathsf{L1} \ \text{and} \ \mathsf{L2} = \mathsf{equal} \ \mathsf{length} \ 50\Omega \ \mathsf{impedance} \ \mathsf{lines} \\ \mathsf{R}_T = 50\Omega \ \mathsf{terminator} \ \mathsf{internal} \ \mathsf{to} \ \mathsf{scope} \\ \mathsf{Decoupling} \ \mathsf{0.1} \ \mu\mathsf{F} \ \mathsf{from} \ \mathsf{GND} \ \mathsf{to} \ \mathsf{V}_{CC} \ \mathsf{and} \ \mathsf{V}_{EE} \\ \mathsf{All} \ \mathsf{unused} \ \mathsf{outputs} \ \mathsf{are} \ \mathsf{loaded} \ \mathsf{with} \ 50\Omega \ \mathsf{to} \ \mathsf{GND} \\ \mathsf{C}_L = \ \mathsf{Fixture} \ \mathsf{and} \ \mathsf{stray} \ \mathsf{capacitance} \leq 3 \ \mathsf{pF} \end{array}$

Switching Waveforms

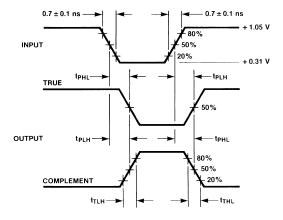


Figure 4. Propagation Delay and Transition Times

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications					
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive				
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications				
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers				
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps				
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy				
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial				
Interface	interface.ti.com	Medical	www.ti.com/medical				
Logic	logic.ti.com	Security	www.ti.com/security				
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense				
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video				
RFID	www.ti-rfid.com						
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com				
Wireless Connectivity	www.ti.com/wirelessconnectivity						

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated