100329

100329 Low Power Octal ECL/TTL Bidirectional Translator with Register

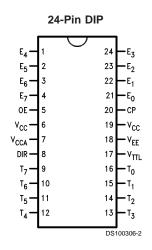
Literature Number: SNOS122A

100329

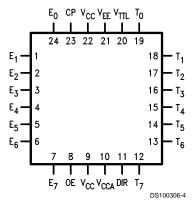
Low Power Octal ECL/TTL Bidirectional Translator with Register

General Description

The 100329 is an octal registered bidirectional translator designed to convert TTL logic levels to 100K ECL logic levels and vice versa. The direction of the translation is determined by the DIR input. A LOW on the output enable input (OE) holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. The outputs change synchronously with the rising edge of the clock input (CP) even though only one output is enabled at the time.

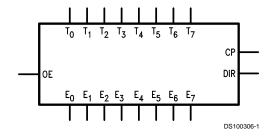

The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0V, presenting a high impedance to the data bus. This high impedance reduces the termination power and prevents loss of low state noise margin when several loads share the bus.

The 100329 is designed with FAST® TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads. All inputs have $50 \text{ k}\Omega$ pull-down resistors.


Features

- Bidirectional translation
- ECL high impedance outputs
- Registered outputs
- FAST TTL outputs
- TRI-STATE® outputs
- Voltage compensated operating range = -4.2V to -5.7V
- Standard Microcircuit Drawing (SMD) 5962-9206601

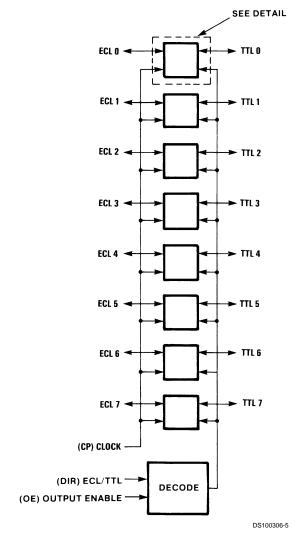
Connection Diagrams



24-Pin Quad Cerpack

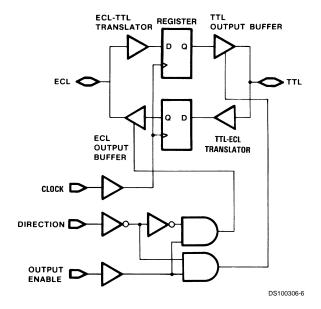
TRI-STATE® is a registered trademark of National Semiconductor Corporation. FAST® is a registered trademark of Fairchild Semiconductor.

Logic Symbol



Pin Descriptions

Pin Names	Description
E ₀ -E ₇	ECL Data I/O
T ₀ -T ₇	TTL Data I/O
OE	Output Enable Input
CP	Clock Pulse Input
	(Active Rising Edge)
DIR	Direction Control Input


All pins function at 100K ECL levels except for T_0-T_7 .

Functional Diagram

Note: DIR and OE use ECL logic levels

Detail

OE	DIR	СР	ECL	TTL	Notes
			Port	Port	
L	L	Х	Input	Z	1, 3
L	Н	Х	LOW	Input	2, 3
			(Cut-Off)		
Н	L	~	L	L	1
Н	L	~	Н	Н	1
Н	L	L	X	NC	1, 3
Н	Н	~	L	L	2
Н	Н	~	Н	Н	2
Н	Н	L	NC	Х	2, 3

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High Impedance

✓ = LOW-to-HIGH Clock Transition

NC = No Change

Note 1: ECL input to TTL output mode.

Note 2: TTL input to ECL output mode.

Note 3: Retains data present before CP.

Absolute Maximum Ratings (Note 4)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature (T_{STG}) $-65^{\circ}C$ to +150 $^{\circ}C$

Maximum Junction Temperature (T_i)

Ceramic +175°C

V_{EE} Pin Potential to

Ground Pin -7.0V to +0.5V

V_{TTL} Pin Potential to

Ground Pin -0.5V to +6.0V

ECL Input Voltage (DC) V_{EE} to +0.5V

ECL Output Current

(DC Output HIGH) –50 mA

TTL Input Voltage (Note 6) -0.5V to +6.0V

TTL Input Current (Note 6) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State

TRI-STATE Output -0.5V to +5.5V

Current Applied to TTL

Output in LOW State (Max) Twice the Rated I_{OL} (mA) ESD (Note 5) \geq 2000V

Recommended Operating Conditions

Case Temperature (T_C)

Military -55°C to $+125^{\circ}\text{C}$

ECL Supply Voltage (V_{EE}) -5.7V to -4.2V TTL Supply Voltage (V_{TTL}) +4.5V to +5.5V

Note 4: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 5: ESD testing conforms to MIL-STD-883, Method 3015.

Note 6: Either voltage limit or current limit is sufficient to protect inputs.

Military Version TTL-to-ECL DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C, V_{TTL} = +4.5V to +5.5V

Symbol	Parameter	Min	Min Max Units T _C Condi		tions	Notes		
V _{OH}	Output HIGH Voltage	-1025	-870	mV	0°C to		Loading with	(Notes 7, 8,
					+125°C		50Ω to -2.0V	9)
		-1085	-870	mV	−55°C	$V_{IN} = V_{IH} (Max)$		
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to	or V _{IL} (Min)		
					+125°C			
		-1830	-1555	mV	−55°C			
	Cutoff Voltage		-1950	mV	0°C to			
					+125°C	OE or DIR Low		
			-1850	mV	−55°C			
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to			(Notes 7, 8,
					+125°C			9)
		-1085		mV	−55°C	$V_{IN} = V_{IH} (Min)$	Loading with	
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to	or V _{IL} (Max)	50Ω0 to -2.0V	
					+125°C			
			-1555	mV	−55°C			
V _{IH}	Input HIGH Voltage	2.0		V	−55°C to	Over V _{TTL} , V _{EE} , T _C Range		(Notes 7, 8,
					+125°C		9, 10)	
V_{IL}	Input LOW Voltage		0.8	V	−55°C to	Over V _{TTL} , V _{EE} , T _C Range		(Notes 7, 8,
					+125°C			9, 10)
I _{IH}	Input HIGH Current		70	μA	−55°C to	$V_{IN} = +2.7V$		(Notes 7, 8,
					125°C	V _{IN} = +5.5V		9)
	Breakdown Test		1.0	mA	−55°C to			
					+125°C			
I _{IL}	Input LOW Current	-1.0		mA	−55°C to	$V_{IN} = +0.5V$		(Notes 7, 8,
					+125°C			9)
V _{FCD}	Input Clamp	-1.2		V	−55°C to	I _{IN} = -18 mA		(Notes 7, 8,
	Diode Voltage				+125° C			9)
I _{EE}	V _{EE} Supply Current				−55°C to	OE and DIR High		(Notes 7, 8,
						Inputs Open		9)
		-206	-70	mA	+125°C	$V_{EE} = -4.2V \text{ to } -5$		

Military Version ECL-to-TTL DC Electrical Characteristics

 $V_{EE} = -4.2 V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -55 ^{\circ}C$ to +125 $^{\circ}C$, $C_{L} = 50$ pF, $V_{TTL} = +4.5 V$ to + 5.5V

Symbol	Parameter	Min	Max	Units	T _C	Conditions	Notes
V _{OH}	Output HIGH Voltage	2.5		mV	0°C to +125°C	$I_{OH} = -1 \text{ mA}, V_{TTL} = 4.50V$	(Notes 7, 8, 9)
		2.4			−55°C		
V _{OL}	Output LOW Voltage		0.5	mV	−55°C	$I_{OL} = 24 \text{ mA}, V_{TTL} = 4.50 \text{V}$	
					+125°C		
V _{IH}	Input HIGH Voltage	-1165	-870	mV	−55°C	Guaranteed HIGH Signal	(Notes 7, 8, 9, 10)
					+125°C	for All Inputs	
V _{IL}	Input LOW Voltage	-1830	-1475	mV	−55°C to	Guaranteed LOW Signal	(Notes 7, 8, 9, 10)
					+125°C	for All Inputs	
I _{IH}	Input HIGH Current		350	μA	0°C to	V _{EE} = -5.7V	(Notes 7, 8, 9)
			500		+125°C	$V_{IN} = V_{IH} (Max)$	
I _{IL}	Input LOW Current	0.50		μA	−55°C to	V _{EE} = -4.2V	(Notes 7, 8, 9)
					+125°C	$V_{IN} = V_{IL} (Min)$	
I _{OZHT}	TRI-STATE Current		70	μΑ	−55°C to	V _{OUT} = +2.7V	(Notes 7, 8, 9)
	Output High				+125°C		
I _{OZLT}	TRI-STATE Current	-1.0		mA	−55°C to	$V_{OUT} = +0.5V$	(Notes 7, 8, 9)
	Output Low				+125°C		
Ios	Output Short-Circuit	-60	-150	mA	−55°C to	$V_{OUT} = 0.0V, V_{TTL} = +5.5V$	(Notes 7, 8, 9)
	CURRENT				+125°C		
I _{TTL}	V _{TTL} Supply Current		70	mA	−55°C to	TTL Outputs Low	(Notes 7, 8, 9)
			47	mA	+125°C	TTL Output High	
			70	mA		TTL Output in TRI-STATE	
	1				l .		

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 8: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups, 1, 2 3, 7, and 8.

Note 9: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 10: Guaranteed by applying specified input condition and testing V_{OH}/V_{OL} .

Military Version TTL-to-ECL AC Electrical Characteristics

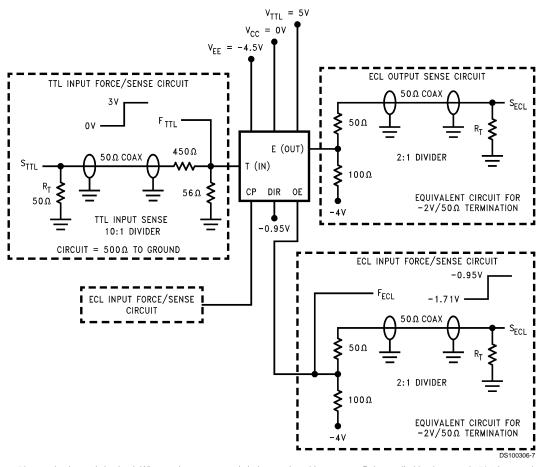
 V_{EE} = -4.2V to -5.7V, V_{TTL} = +4.5V to +5.5V, V_{CC} = V_{CCA} = GND

Symbol	Parameter	T _C =	$T_C = -55^{\circ}C$		T _C = 25°C		T _C = +125°C		Conditions	Notes
		Min	Max	Min	Max	Min	Max	1		
t _{PLH}	CP to E _n	1.3	3.8	1.6	3.7	1.9	4.3	ns	Figures 1, 2	(Notes 11,
t _{PHL}								ns		12, 13)
t _{PZH}	OE to E _n	1.0	4.3	1.5	4.4	1.7	9.0	ns	Figures 1, 2	(Notes 11,
	(Cutoff to HIGH)									12, 13)
t _{PHZ}	OE to E _n	1.5	5.0	1.6	4.5	1.6	5.0	ns	Figures 1, 2	
	(HIGH to Cutoff)									
t _{PHZ}	DIR to E _n	1.6	4.7	1.6	4.3	1.7	4.7	ns	Figures 1, 2	
	(HIGH to Cutoff)									
t _{set}	T _n to CP	2.5		2.0		2.5		ns	Figures 1, 2	(Note 14)
t _{hold}	T _n to CP	2.5		2.0		2.5		ns	Figures 1, 2	
t _{pw} (H)	Pulse Width CP	2.5		2.0		2.5		ns	Figures 1, 2	(Note 14)
t _{TLH}	Transition Time	0.4	2.3	0.5	2.1	0.4	2.4	ns	Figures 1, 2	(Note 14)
t _{THL}	20% to 80%, 80% to 20%									
f _{MAX}	CP	250		250		250		MHz		

Military Version ECL-to-TTL AC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{TTL} = +4.5V to +5.5V, V_{CC} = V_{CCA} = GND, C_{L} = 50 pF

Symbol	Parameter	T _C =	–55°C	T _C =	: 25°C	T _C = +125°C		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
t _{PLH}	CP to T _n	3.1	8.0	3.1	7.3	3.3	8.0	ns	Figures 1, 2	(Notes 11, 12, 13)
t _{PZH}	OE to T _n	3.4	9.1	3.7	9.0	4.0	10.1	ns	Figures 3, 4	(Notes 11, 12,
t _{PZL}	(Enable Time)	3.7	9.5	4.0	9.3	4.3	10.4			13)
t _{PHZ}	OE to T _n	3.2	10.0	3.3	9.0	3.5	9.3	ns	Figures 3, 5	
t _{PLZ}	(Disable Time)	3.0	9.8	3.4	8.8	4.1	10.4			
t _{PHZ}	DIR to T _n	2.6	9.5	2.8	8.8	3.0	9.0	ns	Figures 3, 6	
t _{PLZ}	(Disable Time)	2.7	8.7	3.1	8.0	4.0	9.6			
t _{set}	E _n to CP	2.5		2.0		2.5		ns	Figures 3, 4	(Note 14)
t _{hold}	E _n to CP	3.0		2.5		3.0		ns	Figures 3, 4	
t _{pw} (H)	Pulse Width CP	2.5		2.5		5.0		ns	Figures 3, 4	(Note 14)
f _{MAX}	СР	200		200		100		MHz		


Note 11: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 12: Screen tested 100% on each device at +25°C, temperature only, Subgroup A9.

Note 13: Sample tested (Method 5005, Table I) on each mfg. lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11.

Note 14: Not tested at +25°C, +125°C and -55°C temperature (design characterization data).

Test Circuitry (TTL-to-ECL)

Note 15: $R_T = 50\Omega$ termination resistive load. When an input or output is being monitored by a scope, R_T is supplied by the scope's 50Ω input resistance. When an input or output is not being monitored, an external 50Ω resistance must be applied to serve as R_T .

Note 16: TTL and ECL force signals are brought to the DUT via 50Ω coax lines.

Note 17: V_{TTL} is decoupled to ground with 0.1 μ F, V_{EE} is decoupled to ground with 0.01 μ F and V_{CC} is connected to ground.

FIGURE 1. TTL-to-ECL AC Test Circuit

Switching Waveforms (TTL-to-ECL)

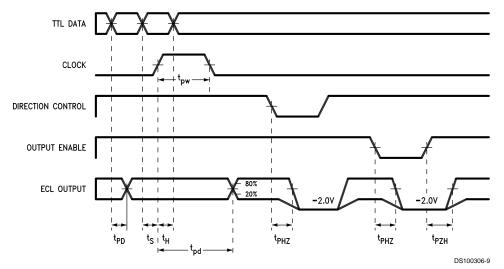
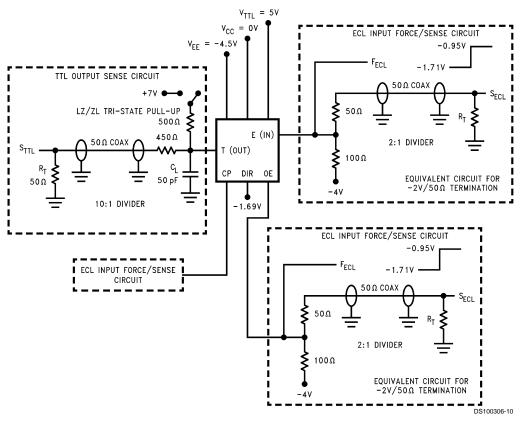
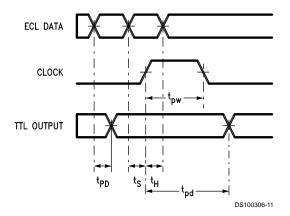



FIGURE 2. TTL to ECL Transition—Propagation Delay and Transition Times

7

Test Circuitry (ECL-to-TTL)

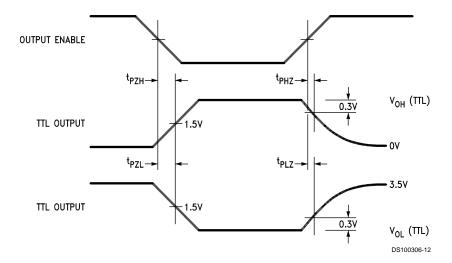
Note 18: $R_T = 50\Omega$ termination resistive load. When an input or output is being monitored by a scope, R_T is supplied by the scope's 50Ω input resistance. When an input or output is not being monitored, an external 50Ω resistance must be applied to serve as R_T .


Note 19: The TTL TRI-STATE pull-up switch is connected to +7V only for ZL and LZ tests.

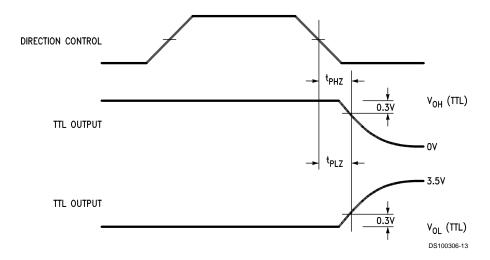
Note 20: TTL and ECL force signals are brought to the DUT via 50Ω coax lines.

Note 21: V_{TTL} is decoupled to ground with 0.1 μ F, V_{EE} is decoupled to ground with 0.01 μ F and V_{CC} is connected to ground.

FIGURE 3. ECL-to-TTL AC Test Circuit

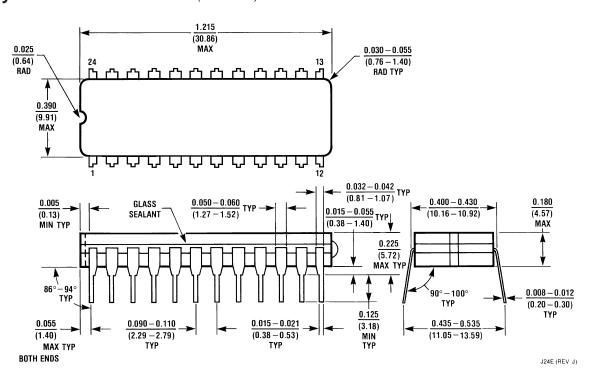

Switching Waveforms (ECL-to-TTL)

Note: DIR is LOW, OE is HIGH


FIGURE 4. ECL-to-TTL Transition — Propagation Delay and Transition Times

Switching Waveforms (ECL-to-TTL) (Continued)

Note: DIR is LOW


FIGURE 5. ECL-to-TTL Transition, OE to TTL Output, Enable and Disable Times

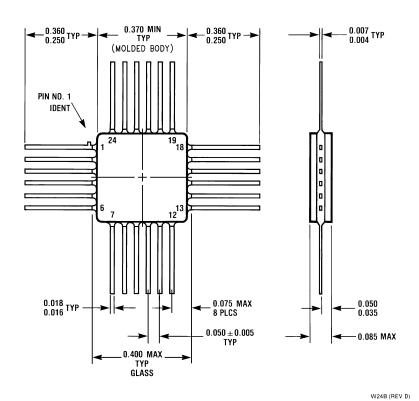

Note: OE is HIGH

FIGURE 6. ECL-to-TTL Transition, DIR to TTL Output, Disable Time

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Ceramic Dual-In-Line Package (0.400" Wide) (D)
Package Number J24E

24-Lead Quad Cerpak (F)
Package Number W24B

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466

Email: ap.support@nsc.com

National Semiconductor Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers Microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>