

July 1989 Revised August 2000

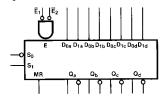
100355

Low Power Quad Multiplexer/Latch

General Description

The 100355 contains four transparent latches, each of which can accept and store data from two sources. When both Enable (\overline{E}_n) inputs are LOW, the data that appears at an output is controlled by the Select (S_n) inputs, as shown in the Operating Mode table. In addition to routing data from either D_0 or D_1 , the Select inputs can force the outputs LOW for the case where the latch is transparent (both Enables are LOW) and can steer a HIGH signal from either D_0 or D_1 to an output. The Select inputs can be tied together for applications requiring only that data be steered from either D_0 or D_1 . A positive-going signal on either Enable input latches the outputs. A HIGH signal on the Master Reset (MR) input overrides all the other inputs and forces the Q outputs LOW. All inputs have 50 $k\Omega$ pull-down resistors.

Features

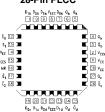

- Greater than 40% power reduction of the 100155
- 2000V ESD protection
- Pin/function compatible with 100155
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range

Ordering Code:

Order Number	Package Number	Package Description
100355PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100355QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100355QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol



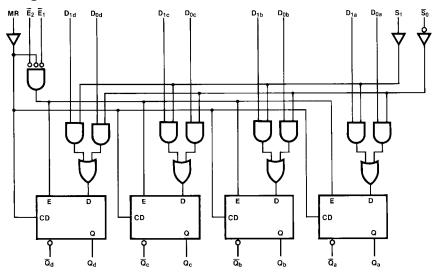
Pin Descriptions

Pin Names	Description
$\overline{E}_1, \overline{E}_2$	Enable Inputs (Active LOW)
S ₀ , S ₁	Select Inputs
MR	Master Reset
D _{na} –D _{nd}	Data Inputs
Q _a –Q _d	Data Outputs
$\overline{Q}_a - \overline{Q}_d$	Complementary Data Outputs

Connection Diagrams

Operating Mode Table

	Con	trols		Outputs				
E ₁	E ₂	S ₁	S ₀	Q _n				
Н	Х	Х	Х	Latched (Note 1)				
Х	Н	Х	Х	Latched (Note 1)				
L	L	L	L	D _{0x}				
L	L	Н	L	$D_{0x} + D_{1x}$				
L	L	L	Н	L				
L	L	Н	Н	D _{1x}				


H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care

Note 1: Stores data present before $\overline{\overline{E}}$ went HIGH

Truth Table

		ı	Outp	uts						
MR	E ₁	E ₂	S ₁	\overline{s}_0	D _{1x}	D _{0x}	$\overline{\mathbf{Q}}_{\mathbf{x}}$	$\mathbf{Q}_{\mathbf{x}}$		
Н	Χ	Χ	Χ	Χ	Χ	Χ	Н	L		
L	L	L	Н	Н	Н	Χ	L	Н		
L	L	L	Н	Н	L	Χ	Н	L		
L	L	L	L	L	Χ	Н	L	Н		
L	L	L	L	L	Χ	L	Н	L		
L	L	L	L	Н	Χ	Χ	Н	L		
L	L	L	Н	L	Н	Χ	L	Н		
L	L	L	Н	L	Χ	Н	L	Н		
L	L	L	Н	L	L	L	Н	L		
L	Н	Χ	Χ	Χ	Χ	Χ	Latched (Note 1)			
L	Х	Н	Χ	Χ	Х	Χ	Latched (Note 1)			

Logic Diagram

Absolute Maximum Ratings(Note 2)

Recommended Operating Conditions

Case Temperature (T_C)

 $\begin{array}{lll} \mbox{Commercial} & 0 \mbox{°C to } +85 \mbox{°C} \\ \mbox{Industrial} & -40 \mbox{°C to } +85 \mbox{°C} \\ \mbox{Supply Voltage (V_{EE})} & -5.7 \mbox{V to } -4.2 \mbox{V} \end{array}$

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 4)

 $\rm V_{EE} = -4.2V$ to $-5.7V,~V_{CC} = V_{CCA} = GND,~T_{C} = 0^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Units	Conditions				
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$V_{IN} = V_{IH (Max)}$	Loading with			
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V _{IL (Min)}	50Ω to $-2.0V$			
V _{OHC}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH (Min)}$	Loading with			
V _{OLC}	Output LOW Voltage			-1610	mV	or V _{IL (Max)} 50Ω to –2.0V				
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for ALL Inputs				
V _{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal				
						for ALL Inputs				
I _{IL}	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL (Min)}$				
I _{IH}	Input HIGH Current									
	S ₀ , S ₁			220						
	$\overline{E}_1, \overline{E}_2$			350	μΑ	$V_{IN} = V_{IH (Max)}$				
	D _{na} -D _{nd}			340						
	MR			430						
I _{EE}	Power Supply Current	-87		-40	mA	Inputs Open				

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued) DIP AC Electrical Characteristics $\frac{V_{EE} = -4.2 \text{V to } -5.7 \text{V, } V_{CC} = V_{CCA} = \text{GND}}{\text{T}_{c} = 0^{\circ}\text{C}}$

Symbol	Parameter	T _C =	$\mathbf{T_C} = 0^{\circ}\mathbf{C}$		$T_C = +25^{\circ}C$		+85°C	Units	Conditions
Syllibol		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay								
t _{PHL}	D _{na} -D _{nd} to Output	0.60	1.90	0.60	1.90	0.70	2.00	ns	
	(Transparent Mode)								
t _{PLH}	Propagation Delay								Figures 1, 2
t _{PHL}	\overline{S}_0 , S_1 to Output	1.00	2.60	1.00	2.60	1.20	2.70	ns	
	(Transparent Mode)								
t _{PLH}	Propagation Delay	0.80	2.00	0.80	2.00	0.80	2.10	ns	
t _{PHL}	\overline{E}_1 , \overline{E}_2 to Output	0.60	2.00	0.60	2.00	0.60	2.10	115	
t _{PLH}	Propagation Delay	0.80	2.30	0.80	2.30	0.80	2.30	ns	Figures 1, 3
t _{PHL}	MR to Output	0.60	2.30	0.00	2.50	0.00	2.00	113	rigules 1, 3
t _{TLH}	Transition Time	0.60	1.40	0.60	1.40	0.60	1.40	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%	0.60	1.40	0.60	1.40	0.60	1.40	115	1 iguitos 1, 2
t _S	Setup Time								
	D _{na} –D _{nd}	0.90		0.90		0.90		ns	Figure 4
	S ₀ , S ₁	1.70		1.70		1.70			
	MR (Release Time)	1.50		1.50		1.50			Figure 3
t _H	Hold Time								
	D _{na} –D _{nd}	0.40		0.40		0.40		ns	Figure 4
	S ₀ , S ₁	0.00		0.00		0.00			
t _{PW} (L)	Pulse Width LOW \overline{E}_1 , \overline{E}_2	2.00		2.00		2.00		ns	Figure 2
t _{PW} (H)	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3

Commercial Version (Continued) PLCC AC Electrical Characteristics

 $V_{EF} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

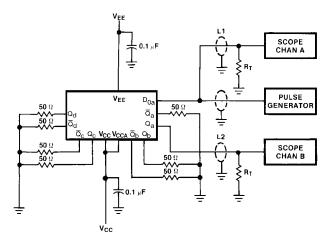
Symbol	Parameter	T _C =	= 0°C	T _C = -	⊦25°C	T _C = -	+85°C	Units	Conditions
3,551		Min	Max	Min	Max	Min	Max		Conditions
t _{PLH}	Propagation Delay								
t _{PHL}	D _{na} -D _{nd} to Output	0.60	1.70	0.60	1.70	0.70	1.80	ns	
	(Transparent Mode)								
t _{PLH}	Propagation Delay								Figures 1, 2
t _{PHL}	S ₀ , S ₁ to Output	1.00	2.40	1.00	2.40	1.20	2.50	ns	
	(Transparent Mode)								
t _{PLH}	Propagation Delay	0.80	1.80	0.80	1.80	0.80	1.90	no	1
t _{PHL}	\overline{E}_1 , \overline{E}_2 to Output	0.60	1.00	0.60	1.00	0.60	1.90	ns	
t _{PLH}	Propagation Delay	0.80	2.10	0.80	2.10	0.80	2.10	ns	Figures 1, 3
t _{PHL}	MR to Output	0.00	2.10	0.80	2.10	0.80	2.10	115	rigules 1, 3
t _{TLH}	Transition Time	0.60	1.30	0.60	1.30	0.60	1.30	ns	Figures 1, 2
t_{THL}	20% to 80%, 80% to 20%	0.00	1.50	0.00	1.50	0.00	1.50	115	rigules 1, 2
t _S	Setup Time								
	D _{na} –D _{nd}	0.80		0.80		0.80		ns	Figure 4
	\overline{S}_0 , S_1	1.60		1.60		1.60			
	MR (Release Time)	1.40		1.40		1.40			Figure 3
t _H	Hold Time								
	D _{na} –D _{nd}	0.30		0.30		0.30		ns	Figure 4
	\overline{S}_0 , S_1	-0.10		-0.10		-0.10			
t _{PW} (L)	Pulse Width LOW \overline{E}_1 , \overline{E}_2	2.00		2.00		2.00		ns	Figure 2
t _{PW} (H)	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3
t _{OSHL}	Maximum Skew Common Edge								PLCC only
	Output-to-Output Variation		330		330		330	ps	(Note 5)
	Data to Output Path								
t _{OSLH}	Maximum Skew Common Edge								PLCC only
	Output-to-Output Variation		370		370		370	ps	(Note 5)
	Data to Output Path								
t _{OST}	Maximum Skew Opposite Edge								PLCC only
	Output-to-Output Variation		370		370		370	ps	(Note 5)
	Data to Output Path								
t _{PS}	Maximum Skew								PLCC only
	Pin (Signal) Transition Variation		270		270		270	ps	(Note 5)
	Data to Output Path								

Note 5: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

Industrial Version

PLCC DC Electrical Characteristics (Note 6) $V_{EE} = -4.2 V$ to -5.7 V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -40 ^{\circ} C$ to $+85 ^{\circ} C$

Symbol	Parameter	$T_C = -40^{\circ}C$		T _C = 0°C	to +85°C	Units	Conditions		
Зуппон		Min	Max	Min	Max	Units	Conditions		
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} = V _{IH} (Max) Loading w		
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	or $V_{IL (Min)}$ 50 Ω to -2		
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	V _{IN} = V _{IH (Min)} Loading w		
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	or V _{IL (Max)} 50Ω to –2		
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal		
							for ALL Inputs		
V _{IL}	Input LOW Voltage	-1830	-1480	1830	1475	mV	Guaranteed LOW Signal		
							for ALL Inputs		
I _{IL}	Input LOW Current	0.50		0.50		μΑ	V _{IN} = V _{IL (Min)}		
I _{IH}	Input HIGH Current								
	\overline{S}_0 , S_1		300		220				
	\overline{E}_1 , \overline{E}_2		350		350	μΑ	$V_{IN} = V_{IH (Max)}$		
	D _{na} -D _{nd}		340		340				
	MR		430		430				
I _{EE}	Power Supply Current	-87	-40	-87	-40	mA	Inputs Open		


Note 6: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

 $\mbox{V}_{\mbox{\footnotesize EE}} = -4.2\mbox{V}$ to $-5.7\mbox{V}, \mbox{ } \mbox{V}_{\mbox{\footnotesize CC}} = \mbox{V}_{\mbox{\footnotesize CCA}} = \mbox{GND}$

Symbol	Parameter	T _C =	–40°C	$T_C = +25^{\circ}C$		T _C =	+85°C	Units	Conditions
Syllibol		Min	Max	Min	Max	Min	Max	Oilles	Conditions
t _{PLH}	Propagation Delay								
t _{PHL}	D _{na} -D _{nd} to Output	0.60	1.70	0.60	1.70	0.70	1.80	ns	
	(Transparent Mode)								
t _{PLH}	Propagation Delay								Figures 1, 2
t_{PHL}	\overline{S}_0 , S_1 to Output	1.00	2.40	1.00	2.40	1.20	2.50	ns	rigules 1, 2
	(Transparent Mode)								
t _{PLH}	Propagation Delay	0.80	1.80	0.80	1.80	0.80	1.90	ns	
t_{PHL}	\overline{E}_1 , \overline{E}_2 to Output	0.80	1.00	0.00	1.00	0.00	1.50	115	
t _{PLH}	Propagation Delay	0.80	2.10	0.80	2.10	0.80	2.10	ns	Figures 1, 3
t _{PHL}	MR to Output	0.00	2.10	0.00	2.10	0.00	2.10	113	rigules 1, 5
t _{TLH}	Transition Time	0.40	1.90	0.60	1.30	0.60	1.30	ns	Figures 1, 2
t_{THL}	20% to 80%, 80% to 20%	0.40	1.50	0.00	1.30	0.00	1.30	115	rigules 1, 2
t _S	Setup Time								
	D _{na} –D _{nd}	0.90		0.80		0.80		ns	Figure 4
	S ₀ , S ₁	2.40		1.60		1.60			
	MR (Release Time)	1.50		1.40		1.40			Figure 3
t _H	Hold Time								
	D _{na} -D _{nd}	0.40		0.30		0.30		ns	Figure 4
	S ₀ , S ₁	0.00		-0.10		-0.10			
t _{PW} (L)	Pulse Width LOW \overline{E}_1 , \overline{E}_2	2.00		2.00		2.00		ns	Figure 2
t _{PW} (H)	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3

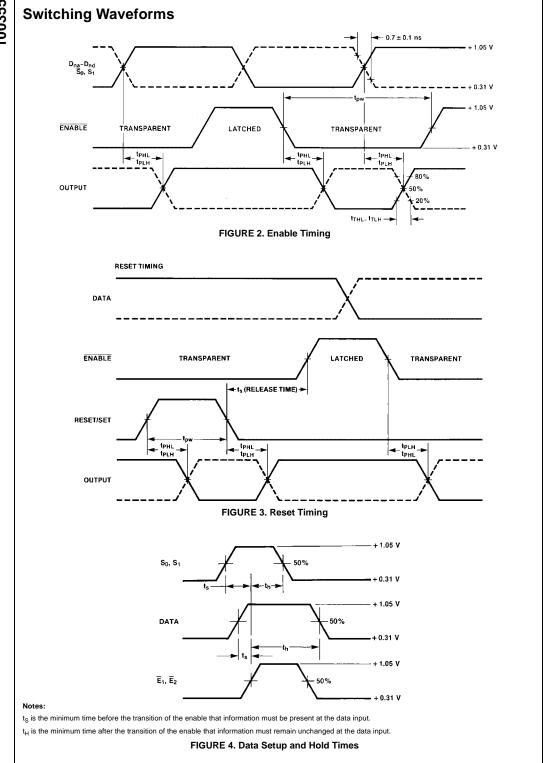
Test Circuit

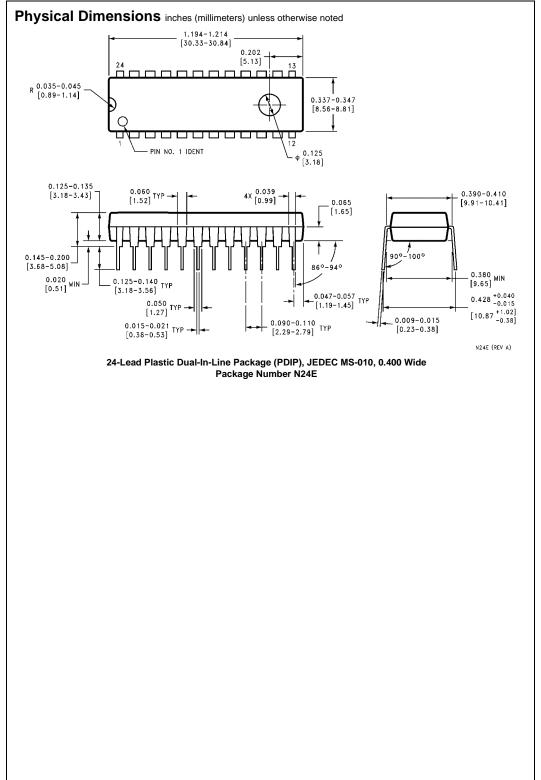
Notes:

 $\mathrm{V_{CC},\ V_{CCA}=+2V,\ V_{EE}=-2.5V}$

L1 and L2 = equal length 50Ω impedance lines

 $R_T = 50\Omega$ terminator internal to scope


Decoupling 0.1 μF from GND to V_{CC} and V_{EE}


All unused outputs are loaded with 50Ω to GND

 $C_L = \mbox{Fixture}$ and stray capacitance $\leq 3 \mbox{ pF}$

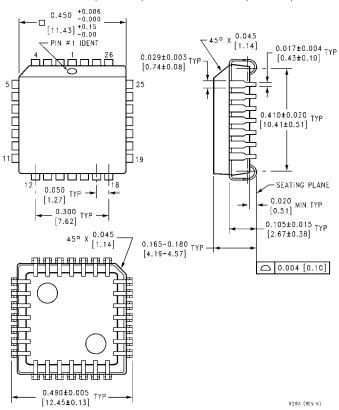

Pin numbers shown are for flatpak; for DIP see logic symbol

FIGURE 1. AC Test Circuit

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com