1 OF 8 DEMULITPLEXER/DECODER (SELECTED OUTPUT IS HIGH)

10162F: -30 to $+85^{\circ} \mathrm{C}$, CERDIP

DIGITAL 10,000 SERIES ECL

FEATURES

- FAST PROPAGATION DELAY
$=4.0 \mathrm{~ns}$ TYP ADDRESS TO OUTPUT
$=4.5 \mathrm{~ns}$ TYP ENABLE TO OUTPUT
- LOW POWER DISSIPATION = 295 mW/PACKAGE TYP (NO LOAD)
- HIGH FANOUT CAPABILITY - CAN DRIVE EIGHT 50Ω LINES
- TRUE PARALLEL DECODER - ELIMINATES UNEQUAL DELAY TIMES
- HIGH IMMUNITY FROM POWER SUPPLY VARIA. TIONS: VEE $=-5.2 \mathrm{~V} \pm 5 \%$ RECOMMENDED
- HIGH Z INPUTS - INTERNAL 50 k Ω PULLDOWNS
- OPEN EMITTER OUTPUTS
- MEETS ECL 10,000 SERIES STANDARD INTERFACE SPECIFICATIONS

APPLICATIONS

- 1 of 8 Decoder
- 1 line to 8 line Demultiplexer

TRUTH TABLE

INPUTS					OUTPUTS							
E1	EO	A2	A1	AO	D0	D1	D2	D3	D4	D5	D6	D7
L	L	L	L	L	H	L	L	L	L	L	L	L
L	L	L	L	H	L	H	L	L	L	L	L	L
L	L	L	H	L	L	L	H	L	L	L	L	L
L	L	L	H	H	L	L	L	H	L	L	L	L
L	L	H	L	L	L	L	L	L	H	L	L	L
L	L	H	L	H	L	L	L	L	L	H	L	L
L	L	H	H	L	L	L	L	L	L	L	H	L
L	L	H	H	H	L	L	L	L	L	L	L	H
H	L	¢	ϕ	ϕ	L	L	L	L	L	L	L	L
L	H	ϕ	ϕ	ϕ	L	L	L	L	L	L	L	L
H	H	ϕ	ϕ	ϕ	L	L	L	L	L	L	L	L

$\phi=$ Doo't Care.

TEMPERATURE RANGE

- -30 to $+85^{\circ} \mathrm{C}$ Operating Ambient

```
VCC1 = 1, VCC2 = 16, VEE = 8
POSITIVE LOGIC: HIGH LEVEL = '1'
```


ELECTRICAL CHARACTERISTICS

(at Listed Voltages and Ambient Temperatures).

$\begin{array}{r} \text { @ Test } \\ \text { Teinpertiture } \\ -\mathbf{3 0}{ }^{\circ} \mathbf{C} \\ +25^{\circ} \mathbf{C} \\ +85^{\circ} \mathrm{C} \end{array}$		TEST VOLTAGE VALUES					$\begin{gathered} \mathbf{I V}_{\mathbf{c c}} \mathbf{o n d}^{\prime} \end{gathered}$
		(Volts)					
		$V_{\text {IH max }}$	$V_{1 L}$ min	$V_{\text {IHA }}$ min	$V_{\text {ILA }}$ max	VEE	
		0.890	-1.880	-1.205	-1.600	-5.2	
		0.810	-1.850	-1.105	-1.475	-5.2	
		0.700	-1.825	-1.035	-1.440	-52	
	Unit	TEST VOLTAGE APPLIED TOPINS LISTED BELOW:					
Max		$V_{\text {IH max }}$	VIL min	VIHA min	$V_{\text {ILA max }}$	VeE	
-	madc	-	-	-	-	8	1,16
-	$\mu \mathrm{Adc}$	14	-	-	-	8	1.16
-	$\mu \mathrm{Adc}$	-	14	-	-	8	1.16
-0.700	Voc	14	-	-	-	8	1,16
-1.815	Vac	2	-	-	-	8	1.16
-1.615	Vde	15	-	-	-	8	1.16
-	Vdc	-	-	14	-	8	1.16
$\begin{aligned} & -1.695 \\ & -1.995 \end{aligned}$	Vde Vac	-	-	$\begin{gathered} 2 \\ 15 \end{gathered}$	-	8	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	n			Puise in	Pulse Out	-3.2 V	+2.0 V
-		-	-	14	1_{1}^{13}	8	1.16
-		-	-				
_							

- Unused outputs connacted to $\mathbf{5 0}$. hm resistor to ground.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY WAVEFORMS @ $25^{\circ} \mathrm{C}$

NOTES:

1. Each ECL $\mathbf{1 0 , 0 0 0}$ series device has been designed to meet the DC specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 fpm is maintained. Voltage levels will shift approximately 5 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50 -ohm resistor to $\mathbf{- 2 . 0}$ volts.
2. For $A C$ tests, all input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be $<1 / 4$ inch from $T P_{\text {in }}$ to input pin and $T P_{\text {out }}$ to output pin. A $50-\mathrm{ohm}$ termination to ground is located in each scope input. Unused outputs are connected to a $\mathbf{5 0} \mathbf{0} \mathbf{- h m}$ resistor to ground.
3. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
4. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
