54/7493A 54LS/74LS93
 DIVIDE-BY-SIXTEEN COUNTER

DESCRIPTION - The ' 93 is a 4 -stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divide-by-eight. HIGH signals on the Master Reset (MR) inputs override the clocks and force all outputs to the LOW state.

ORDERING CODE: See Section 9

PKGS	PIN OUT	COMMERCIAL GRADE	MILITARY GRADE	$\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	
Plastic DIP (P)	A	7493APC, 74LS93PC		9A
Ceramic DIP (D)	A	7493ADC, 74LS93DC	5493ADM, 54LS93DM	6A
Flatpak (F)	A	7493AFC, 74LS93FC	5493AFM, 54LS93FM	31

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 5$
GND $=\operatorname{Pin} 10$
$N C=P i n s 4,6,7,13$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	$54 / 74$ (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW
$\overline{\overline{C P}_{0}}$	$\div 2$ Section Clock Input (Active Falling Edge) $\div 5$ Section Clock Input (Active Falling Edge) Asynchronous Master Reset Inputs (Active HIGH)	$2.0 / 2.0$	$1.0 / 1.5$
$\overline{C P}_{1}$	$\div 2$ Section Output*	$2.0 / 2.0$	$1.0 / 1.0$
MR $_{1}$, MR $_{2}$	$1.0 / 1.0$	$0.5 / 0.25$	
Q_{0}	$\div 8$ Section Outputs	$20 / 10$	$10 / 5.0$
$Q_{1}-Q_{3}$	$20 / 10$	(2.5)	

[^0]FUNCTIONAL DESCRIPTION - The '93 is a 4-bit ripple type binary counter. It consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-eight section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not beused for clocks or strobes. The Q_{0} output of each device is designed and specified to drive the rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input of the device. A gated AND asynchronous Master Reset ($M R_{1}, M R_{2}$) is provided which overrides the clocks and resets (clears) all the flip-flops. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.
A. 4-Bit Ripple Counter - The output Q_{0} must be externally connected to input $\overline{C P}_{1}$. The input count pulses are applied to input $\overline{\mathrm{CP}}_{0}$. Simultaneous divisions of $2,4,8$, and 16 are performed at the $\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{Q}_{2}$, and Q_{3} outputs as shown in the Truth Table.
B. 3-Bit Ripple Counter - The input count pulses are applied to input $\overline{\mathrm{CP}}_{1}$. Simultaneous frequency divisions of 2,4 , and 8 are available at the Q_{1}, Q_{2}, and Q_{3} outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

MODE SELECTION

RESET INPUTS			OUTPUTS			
MR $_{1}$	MR $_{2}$	Q $_{0}$	Q $_{1}$	Q $_{2}$	Q $_{3}$	
H	H	L	L	L	L	
L	H		Count			
H	L		Count			
L	L	Count				

$H=$ HIGH Voltage Level
L = LOW Voltage Level

TRUTH TABLE

COUNT	OUTPUTS			
	Q $_{0}$	Q $_{1}$	Q $_{2}$	Q $_{3}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

NOTE: Output Q_{0} connected to $\overline{\mathrm{CP}}_{1}$.

LOGIC DIAGRAM

SYMBOL	PARAMETER	54/74	54/74LS	UNITS	CONDITIONS
		Min Max	Min Max		
IIH	Input HIGH Current $\overline{\mathrm{CP}} \mathrm{P}_{0}$ or $\overline{\mathrm{CP}}_{1}$	1.0	0.2	mA	$\mathrm{Vcc}=\mathrm{Max}, \mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$
Icc	Power Supply Current	39	15	mA	$\mathrm{VCC}=$ Max

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	54	/74	54/7	4LS	UNITS	CONDITIONS
		$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$		$C_{L}=15 \mathrm{pF}$			
		Min	Max	Min	Max		
$f_{\text {max }}$	Maximum Count Frequency $\overline{\mathrm{CP}} 0$ Input	32		32		MHz	Figs. 3-1, 3-9
$f_{\text {max }}$	Maximum Count Frequency $\overline{\mathrm{CP}}_{1}$ Input	16		16		MHz	Figs. 3-1, 3-9
tpLH tphl	Propagation Delay $\overline{C P}_{0}$ to Q_{0}		$\begin{aligned} & 16 \\ & 18 \\ & \hline \end{aligned}$		$\begin{aligned} & 16 \\ & 18 \end{aligned}$	ns	Figs. 3-1, 3-9
tpLH tphl	Propagation Delay $\overline{C P}_{0}$ to Q_{3}		$\begin{aligned} & 70 \\ & 70 \\ & \hline \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & \hline \end{aligned}$	ns	Figs. 3-1, 3-9
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{C P}_{1}$ to Q_{1}		$\begin{aligned} & 16 \\ & 21 \end{aligned}$		$\begin{aligned} & 16 \\ & 21 \end{aligned}$	ns	Figs. 3-1, 3-9
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{C P}_{1} \text { to } Q_{2} \end{aligned}$		$\begin{aligned} & 32 \\ & 35 \\ & \hline \end{aligned}$		$\begin{aligned} & 32 \\ & 35 \\ & \hline \end{aligned}$	ns	Figs. 3-1, 3-9
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \mathrm{CP}_{1} \text { to } \mathrm{Q}_{3} \end{aligned}$		$\begin{aligned} & 51 \\ & 51 \\ & \hline \end{aligned}$		$\begin{aligned} & 51 \\ & 51 \\ & \hline \end{aligned}$	ns	Figs. 3-1, 3-9
tpHL	Propagation Delay MR to Q_{n}		40		40	ns	Figs. 3-1, 3-17

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS
			Max	Min	Max		
$\mathrm{tw}_{w}(\mathrm{H})$	$\overline{\mathrm{CP}}_{0}$ Puise Width HIGH	15		15		ns	Fig. 3-9
$\mathrm{t}_{w}(H)$	$\overline{\mathrm{CP}}_{1}$ Pulse Width HIGH	30		30		ns	Fig. 3-9
$\mathrm{tax}^{\text {(H)}}$	MR Pulse Width HIGH	15		15		ns	Fig. 3-17
trec	Recovery Time, MR to $\overline{\mathrm{CP}}$	25		25		ns	Fig. 3-17

[^0]: -The Q_{0} output is guaranteed to drive the full rated fan-out plus the $\overline{C P}_{1}$ input.

