## 54ACQ/74ACQ245 • 54ACTQ/74ACTQ245 Quiet Series Octal Bidirectional Transceiver with TRI-STATE ${ }^{\circledR}$ Inputs/Outputs

## General Description

The 'ACQ/'ACTQ245 contains eight non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus-oriented applications. Current sinking capability is 24 mA at both the A and B ports. The Transmit/Receive (T/R) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH $Z$ condition.
The 'ACQ/'ACTQ utilizes NSC Quiet Series technology to guarantee quiet output switching and improve dynamic threshold performance. FACT Quiet Seriestm features GTOTM output control and undershoot corrector in addition to a split ground bus for superior performance.

## Features

■ Guaranteed simultaneous switching noise level and dynamic threshold performance

- Guaranteed pin-to-pin skew AC performance
© Improved latch-up immunity
- TRI-STATE outputs drive bus lines or buffer memory address registers
m Outputs source/sink 24 mA
m Faster prop delays than the standard 'ACT245
- 4 kV minimum ESD immunity ('ACQ)

Ordering Code: See Section 8
Logic Symbols


TL/F/10236-

| Pin <br> Names | Description |
| :--- | :--- |
| $\overline{\mathrm{OE}}$ | Output Enable Input |
| $\mathrm{T} / \overline{\mathrm{R}}$ | Transmit/Receive Input |
| $\mathrm{A}_{0}-\mathrm{A}_{7}$ | Side A TRI-STATE <br>  <br>  <br> Inputs or TRI-STATE <br> $\mathrm{B}_{0}-\mathrm{B}_{7}$ <br>  <br>  <br>  <br>  <br> Sutputs <br> Side B TRI-STATE <br> Inputs or TRI-STATE <br> Outputs |

Truth Table

| Inputs |  | Outputs |
| :---: | :---: | :--- |
| $\overline{\mathbf{O E}}$ | $\mathbf{T} / \overline{\mathrm{R}}$ |  |
| $L$ | $L$ | Bus B Data to Bus A |
| $L$ | $H$ | Bus A Data to Bus B |
| $H$ | $X$ | HIGH-Z State |

[^0]
## Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC


TL/F/10236-3


TL/F/10236-4
Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage (VCC)
DC Input Diode Current ( $I_{K}$ )

$$
\begin{aligned}
& V_{1}=-0.5 V \\
& V_{1}=V_{C C}+0.5 V
\end{aligned}
$$

$$
-20 \mathrm{~mA}
$$

$$
+20 \mathrm{~mA}
$$

DC Input Voltage ( $\mathrm{V}_{1}$ )
DC Output Diode Current (lok)
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$V_{O}=V_{C C}+0.5 \mathrm{~V}$

$$
-20 \mathrm{~mA}
$$

$$
+20 \mathrm{~mA}
$$

DC Output Voltage ( $\mathrm{V}_{\mathrm{O}}$ )

$$
-0.5 \mathrm{~V} \text { to to } \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}
$$

DC Output Source or Sink Current (lo)
DC VCC or Ground Current per Output Pin (ICc or IGND)
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DC Latch-Up Source or Sink Current
$\pm 300 \mathrm{~mA}$
Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )
CDIP
$175^{\circ} \mathrm{C}$ $140^{\circ} \mathrm{C}$

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT circuits outside databook specifications.

## Recommended Operating Conditions

| Supply Voltage $\left(V_{C C}\right)$ | 2.0 V to 6.0 V |
| :--- | ---: |
| 'ACQ | 4.5 V to 5.5 V |
| 'ACTQ | 0 V to $\mathrm{V}_{\mathrm{CC}}$ |
| Input Voltage $\left(\mathrm{V}_{1}\right)$ | 0 V to VCC |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ |  |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| 74ACQ/ACTQ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |

Minimum Input Edge Rate $\Delta V / \Delta t$ 'ACQ Devices $V_{\text {IN }}$ from $30 \%$ to $70 \%$ of $V_{C C}$ $\mathrm{V}_{\mathrm{CC}}$ @ $3.0 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
$125 \mathrm{mV} / \mathrm{ns}$
Minimum Input Edge Rate $\Delta V / \Delta t$ 'ACTQ Devices $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V $\mathrm{V}_{\mathrm{CC}}$ @ $4.5 \mathrm{~V}, 5.5 \mathrm{~V}$

## DC Characteristics for 'ACQ Family Devices

| Symbol | Parameter | $V_{C c}$ <br> (V) | 74ACQ |  | 54ACQ | 74ACQ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | $\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$ |  |  |
|  |  |  | Typ | Guaranteed Limits |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Minimum High Level Input Voltage | $\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$ | $\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$ | $\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$ | $\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$ | $\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$ | V | $\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}-0.1 \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\text {IL }}$ | Maximum Low Level Input Voltage | $\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$ | $\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$ | $\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$ | $\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$ | V | $\begin{aligned} & V_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$ |
| VOH | Minimum High Level Output Voltage | $\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.99 \\ & 4.49 \\ & 5.49 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$ | V | IOUT $=-50 \mu \mathrm{~A}$ |
|  |  | $\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ |  | $\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$ | $\begin{aligned} & 2.4 \\ & 3.7 \\ & 4.7 \end{aligned}$ | $\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$ | V | $\begin{aligned} { }^{*} \mathrm{~V}_{\text {IN }}= & \mathrm{V}_{\text {IL }} \text { or } V_{\text {IH }} \\ & -12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}} \quad & -24 \mathrm{~mA} \\ & -24 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{V}_{\text {OL }}$ | Maximum Low Level Output Voltage | $\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$ | V | IOUT $=50 \mu \mathrm{~A}$ |
|  |  | $\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ |  | $\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$ | V |  |
| IN | Maximum Input Leakage Current | 5.5 |  | $\pm 0.1$ | $\pm 1.0$ | $\pm 1.0$ | $\mu \mathrm{A}$ | $V_{1}=V_{c c}, G N D$ <br> (Note 1) |

[^1]DC Characteristics for 'ACQ Family Devices (Continued)

| Symbol | Parameter | $V_{C C}$ <br> (V) |  |  | 54ACQ | 74ACQ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | $\begin{gathered} T_{A}= \\ -55^{\circ} C \text { to }+125^{\circ} C \end{gathered}$ | $\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$ |  |  |
|  |  |  | Typ | Guaranteed Limits |  |  |  |  |
| lold | $\dagger$ Minimum Dynamic Output Current | 5.5 |  |  | 50 | 75 | mA | $\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max |
| IOHD |  | 5.5 |  |  | -50 | -75 | mA | $V_{\text {OHD }}=3.85 \mathrm{~V}$ Min |
| Icc | Maximum Quiescent Supply Current | 5.5 |  | 8.0 | 160.0 | 80.0 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\mathbb{N}}=V_{C C} \\ & \text { or GND (Note 1) } \end{aligned}$ |
| lozt | Maximum I/O Leakage Current | 5.5 |  | $\pm 0.6$ | $\pm 11.0$ | $\pm 6.0$ | $\mu \mathrm{A}$ | $\begin{aligned} & V_{1}(O E)=V_{I L}, V_{I H} \\ & V_{1}=V_{C C}, G N D \\ & V_{O}=V_{C C}, G N D \end{aligned}$ |
| VoLP | Quiet Output Maximum Dynamic $\mathrm{V}_{\mathrm{OL}}$ | 5.0 | 1.1 | 1.5 |  |  | V | Figures 1, 2 (Notes 2, 3) |
| Volv | Quiet Output Minimum Dynamic VOL | 5.0 | -0.6 | -1.2 |  |  | V | Figures 1, 2 <br> (Notes 2,3) |
| $V_{\text {IHD }}$ | Maximum High Level Dynamic Input Voltage | 5.0 | 3.1 | 3.5 |  |  | V | (Notes 2, 4) |
| VILD | Maximum Low Level Dynamic Input Voltage | 5.0 | 1.9 | 1.5 |  |  | V | (Notes 2, 4) |

- All outputs loaded; thresholds on input associated with output under test.
$\dagger$ Maximum test duration 2.0 ms , one output loaded at a time.

Note 2: Worst case package.
Note 3: Max number of outputs defined as ( $n$ ). Data Inputs are driven OV to 5 V ; one output © GND.
Note 4: Max number of Data Inputs ( $n$ ) switching. ( $n-1$ ) Inputs switching OV to 5 V ('ACQ). Input-under-test switching: 5 V to threshold ( $V_{1 L}$ ), OV to threshold ( $V_{1 H D}$ ), $1=1 \mathrm{MHz}$.


## DC Characteristics for 'ACTQ Family Devices

| Symbol | Parameter | VGC <br> (V) | 74ACTQ |  | 54ACTQ | 74ACTQ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | $\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$ |  |  |
|  |  |  | Typ | Guaranteed Limits |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Minimum High Level Input Voltage | $\begin{array}{r} 4.5 \\ 5.5 \\ \hline \end{array}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$ | $\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$ | $\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$ | V | $\begin{aligned} & V_{O U T}=0.1 V \\ & \text { or } V_{C C}=0.1 V \end{aligned}$ |
| $V_{\text {IL }}$ | Maximum Low Level Input Voltage | $\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$ | V | $\begin{aligned} & V_{O U T}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}-0.1 \mathrm{~V} \end{aligned}$ |
| VOH | Minimum High Level Output Voltage | $\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$ | $\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$ | $\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$ | $\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$ | V | I'Uut $=-50 \mu \mathrm{~A}$ |
|  |  | $\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$ |  | $\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$ | $\begin{aligned} & 3.70 \\ & 4.70 \end{aligned}$ | $\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$ | V | $\begin{aligned} { }^{*} V_{I N}= & V_{\text {IL }} \text { or } V_{\text {IH }} \\ & -24 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}} & -24 \mathrm{~mA} \end{aligned}$ |
| VOL | Maximum Low Level Output Voltage | $\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$ | V | IOUT $=50 \mu \mathrm{~A}$ |
|  |  | $\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0.36 \\ & 0.36 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$ | V | $\begin{aligned} & { }^{*} V_{I N}=V_{I L} \text { or } V_{\text {IH }} \\ & 24 \mathrm{~mA} \\ & \text { IOL }^{24 \mathrm{~mA}} \end{aligned}$ |
| IN | Maximum Input Leakage Current | 5.5 |  | $\pm 0.1$ | $\pm 1.0$ | $\pm 1.0$ | $\mu \mathrm{A}$ | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc},}$ GND |

[^2]| DC Characteristics for 'ACTQ Family Devices (Continued) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | VCC <br> (V) | 74ACTO |  | 54ACTA | 74ACTQ | Units | Conditions |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | $\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$ |  |  |
|  |  |  | Typ | Guaranteed LImits |  |  |  |  |
| loz | Maximum TRI-STATE Leakage Current | 5.5 |  | $\pm 0.5$ | $\pm 10.0$ | $\pm 5.0$ | $\mu \mathrm{A}$ | $\begin{aligned} & V_{1}=V_{I L 1} V_{I H} \\ & V_{\mathrm{O}}=V_{C C}, G N D \end{aligned}$ |
| ICCT | Maximum Icc/Input | 5.5 | 0.6 |  | 1.6 | 1.5 | mA | $V_{1}=V_{C C}-2.1 \mathrm{~V}$ |
| IOLD | $\dagger$ Minimum Dynamic Output Current | 5.5 |  |  | 50 | 75 | mA | $\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max |
| IOHD |  | 5.5 |  |  | -50 | -75 | mA | $\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min |
| Íc | Maximum Quiescent Supply Current | 5.5 |  | 8.0 | 160.0 | 80.0 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I N}=V_{C C} \\ & \text { or GND (Note 1) } \end{aligned}$ |
| $\mathrm{V}_{\text {OLP }}$ | Quiet Output Maximum Dynamic VOL | 5.0 | 1.1 | 1.5 |  |  | V | Figures 1, 2 (Notes 2, 3) |
| $\mathrm{V}_{\text {OLV }}$ | Quiet Output Minimum Dynamic $V_{O L}$ | 5.0 | -0.6 | -1.2 |  |  | V | Figures 1, 2 <br> (Notes 2, 3) |
| VIHD | Maximum High Level Dynamic Input Voltage | 5.0 | 1.9 | 2.2 |  |  | V | (Notes 2, 4) |
| VILD | Maximum Low Level Dynamic Input Voltage | 5.0 | 1.2 | 0.8 |  |  | V | (Notes 2, 4) |

-All outputs loaded; thresholds on input associated with output under test.
$\dagger$ Maximum test duration 2.0 ms , one output loaded at a time.
Note 1: ICC for 54 ACTO © $25^{\circ} \mathrm{C}$ is identical to 74 ACTO © $25^{\circ} \mathrm{C}$.
Note 2: Worst case package.
Note 3: Max number of outputs delined as ( $n$ ). $n-1$ Data inputs are driven OV to 3V; one output © GND.
Note 4: Max number of Data Inputs ( $n$ ) switching. ( $n-1$ ) Inputs switching OV to 3V ('ACTQ). Input-under-test switching: 3V to threshold ( $V_{1 L}$ ), oV to threshold $\left(V_{\mathrm{IHD}}\right) \mathrm{f}=1 \mathrm{MHz}$.

## AC Electrical Characteristics: See Section 2 for Waveforms

| Symbol | Parameter | VCc* <br> (V) | 74ACQ |  |  | 54ACQ |  | 74ACQ |  | Units | Fig. <br> No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ C_{L} & =50 \mathrm{pF} \end{aligned}$ |  |  | $\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$ |  | $\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  |  |  |
|  |  |  | Min | Typ | Max | Min | Max | Min | Max |  |  |
| ${ }^{\text {t }}$ PHL, ${ }^{\text {t }}$ PLH | Propagation Delay Data to Output | $\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$ | $\begin{gathered} 10.0 \\ 6.5 \end{gathered}$ |  |  | $\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$ | $\begin{gathered} 10.5 \\ 7.0 \end{gathered}$ | ns | 2-3, 4 |
| $t_{\text {PZL, }} \mathrm{t}_{\text {PZH }}$ | Output Enable Time | $\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} 13.0 \\ 8.5 \end{gathered}$ |  |  | $\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$ | $\begin{gathered} 13.5 \\ 9.0 \end{gathered}$ | ns | 2-5, 6 |
| $\mathrm{tPHZ}^{\text {P }}$ tPLZ | Output Disable Time | $\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 8.5 \\ & 7.5 \\ & \hline \end{aligned}$ | $\begin{gathered} 14.5 \\ 9.5 \\ \hline \end{gathered}$ |  |  | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 15.0 \\ & 10.0 \\ & \hline \end{aligned}$ | ns | 2-5, 6 |
| ${ }^{\text {toSHLD }}$ <br> tosin | Output to Output Skew** <br> Data to Output | $\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$ |  | $\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1,0 \end{aligned}$ |  |  |  | $\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$ | ns |  |

-Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

- "Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, ether HIGH to LOW (IOSHL) or LOW to HIGH (tOSLH). Parameter guaranteed by design.

AC Electrical Characteristics: See Section 2 for Waveforms

| Symbol | Parameter | $\mathrm{V}_{\mathrm{cc}}{ }^{*}$ <br> (V) | 74ACTQ |  |  | 54ACTQ |  | 74ACTQ |  | Units | Fig. No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  |  | $\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$ |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  |  |  |
|  |  |  | Min | Typ | Max | Min | Max | Min | Max |  |  |
| $\mathrm{tPHL}^{\text {P }}$ tPLH | Propagation Delay Data to Output | 5.0 | 1.5 | 5.5 | 7.0 | 1.5 | 9.0 | 1.5 | 7.5 | ns | 2-3, 4 |
| tpZL, $^{\text {tpZ }}$ | Output Enable Time | 5.0 | 2.0 | 7.0 | 9.0 | 1.5 | 12.0 | 2.0 | 9.5 | ns | 2-5, 6 |
| $t_{\text {PHZ }}$, tPLZ | Output Disable Time | 5.0 | 1.0 | 8.0 | 10.0 | 1.0 | 11.5 | 1.0 | 10.5 | ns | 2-5,6 |
| toshl, tOSLH | Output to Output Skew** <br> Data to Output | 5.0 |  | 0.5 | 1.0 |  |  |  | 1.0 | ns |  |

${ }^{\bullet}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

- 'Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (IOSHL) or LOW to HIGH (LOSLH). Parameter guaranteed by design.


## Capacitance

| Symbol | Parameter | Typ | Units | Condiftions |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}$ | Input Capacitance | 4.5 | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| $\mathrm{C}_{/ / \mathrm{O}}$ | Input/Output <br> Capacitance | 15 | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| $\mathrm{C}_{\mathrm{PD}}$ | Power Dissipation <br> Capacitance | 80.0 | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |


[^0]:    H = HIGH Voltage Leve
    L = LOW Voltage Level
    $X=$ Immaterial

[^1]:    *All outputs loaded; thresholds on input associated with output under test.
    tMaximum test duration 2.0 ms, one output loaded at a time.

[^2]:    -All outputs loaded; thresholds on input associated with output under test.
    tMaximum test duration 2.0 ms , one output loaded at a time.

