54FCT/74FCT533A

Octal Transparent Latch with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'FCT533A consists of eight latches with TRI-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable ($\overline{\mathrm{OE}})$ is LOW. When $\overline{\mathrm{OE}}$ is HIGH the bus output is in the high impedance state. The 'FCT533A is the same as the 'FCT373A, except that the outputs are inverted.
FACT FCTA utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCTA features undershoot correction and split ground bus for superior performance.

Features

- NSC 54FCT/74FCT533A is pin and functionally equivalent to IDT 54FCT/74FCT533A
- TRI-STATE outputs for bus interfacing
- Input clamp diodes to limit bus reflections
© TTL/CMOS input and output level compatible
- $\mathrm{lOL}^{2}=48 \mathrm{~mA}$ (Com), 32 mA (Mil)
- CMOS power levels
- 4 kV minimum ESD immunity
© Military product compliant to MIL-STD 883
© Inherently radiation tolerant

Ordering Code: See Section 8
Logic Symbols

Connection Diagrams
Pin Assignment for DIP, SOIC and Flatpak

TL/F/10638-2

Pin Assignment for LCC
$D_{3} D_{2} \bar{o}_{2} \bar{o}_{1} D_{1}$
[8] 7 [54

TL/F/10638-3

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
LE	Latch Enable Input (Active HIGH)
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	Complementary TRI-STATE Outputs

Inputs			Output
LE	$\overline{\mathbf{O E}}$	\mathbf{D}	$\overline{\mathbf{O}}$
H	L	H	L
H	L	L	H
L	L	X	$\overline{\mathrm{O}}_{\mathbf{0}}$
X	H	X	Z

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=\operatorname{Logic}(0)$ or $\operatorname{logic}(1)$ must be valid Input Level

Functional Description

The 'FCT533A contains eight D-type latches with TRISTATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent and the latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on
the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable ($\overline{\mathrm{OE}}$) input. When $\overline{\mathrm{OE}}$ is LOW the latch contents are presented inverted at the outupts $\overline{\mathrm{O}}_{7}-\overline{\mathrm{O}}_{0}$. When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

TL/F/10638-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Abstract

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Temperature Voltage with respect to GND (VTERM)

\section*{54FCTA} -0.5 V to +7.0 V -0.5 V to +7.0 V Temperature under Bias (TBIAS) 74FCTA $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ 0.5 W

Power Dissipation (P_{T}) DC Output Current (lout)

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT FCT circuits outside databook specifications.

Recommended Operating

 ConditionsSupply Voltage (V_{CC}) 54FCTA
4.5 V to 5.5 V 74FCTA
Input Voltage
Output Voltage
Operating Temperature (T_{A}) 54FCTA
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ 74FCTA
Junction Temperature (T_{J}) CDIP
$175^{\circ} \mathrm{C}$ PDIP $140^{\circ} \mathrm{C}$

DC Characteristics for FCTA Family Devices

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions	
		Min	Typ	Max			
V_{IH}	Minimum HIGH Level Input Voltage	2.0			V		
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage			0.8	V		
IIH	Input High Current			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=\mathrm{Max}$	$\begin{aligned} & V_{1}=V_{C C} \\ & \left.V_{1}=2.7 V \text { (Note } 2\right) \end{aligned}$
IIL	Input Low Current			$\begin{aligned} & -5.0 \\ & -5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\begin{aligned} & \left.V_{1}=0.5 \mathrm{~V} \text { (Note } 2\right) \\ & V_{1}=G N D \end{aligned}$
loz	Maximum TRI-STATE Current			$\begin{gathered} 10.0 \\ 10.0 \\ -10.0 \\ -10.0 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	$V_{C C}=$ Max	$\begin{aligned} & V_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \text { (Note 2) } \\ & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { (Note 2) } \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{GND} \end{aligned}$
V_{IK}	Clamp Diode Voltage		-0.7	-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ; \mathrm{l}_{\mathrm{IN}}=$	
los	Short Circuit Current	-60	-120		mA	$\mathrm{V}_{\text {CC }}=\operatorname{Max}$ (Note	
V_{OH}	Minimum High Level Output Voltage	2.8	3.0		V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} ; \mathrm{l}_{\mathrm{OH}}=-32 \mu \mathrm{~A}$	
		V_{HC}	V_{CC}			$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-300 \mu \mathrm{~A}$
		2.4	4.3				$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}(\mathrm{Mil})$
		2.4	4.3				$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$ (Com)
V_{OL}	Maximum Low Level Output Voltage		GND	0.2	V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} ; \mathrm{l}_{\mathrm{OL}}=300 \mu \mathrm{~A}$	
			GND	0.2		$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=300 \mu \mathrm{~A}$
			0.3	0.50			$\mathrm{IOL}^{\text {a }} 32 \mathrm{~mA}$ (Mil)
			0.3	0.50			$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$ (Com)

DC Characteristics for FCTA Family Devices

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (Continued)

Note 1: Maxdmum test duration not to exceed one second, not more than one output shorted at one time.
Note 2: This parameter guaranteed but not tested.
Note 3: Per TTL driven input ($V_{\mathbb{N}}=3.4 \mathrm{~V}$); all other inputs at V_{CC} or $G N D$.
Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
Note 5: Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
Note 6: $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {QUIESCENT }}+\mathrm{I}_{\text {InPuts }}+\mathrm{I}_{\text {DYNAmic }}$


```
Icc = Quiescent Current
\DeltaICC = Power Supply Current for a TTL High Input (VIN = 3.4V)
DH}=\mathrm{ Duty Cycle for TTL inputs High
NT}=\mathrm{ Number of Inputs at DH
ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
f
N
All currents are in milliamps and all frequencies are in megahertz.
```


AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	54FCTA/74FCTA					Units	Fig. No.
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{A}, V_{C C}=C o m \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=M I I \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Typ	Min	Max	Min	Max		
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n} \text { to } \bar{O}_{n}$	4.0	1.5	5.2			ns	2-8
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \end{aligned}$	Propagation Delay LE to \bar{O}_{n}	7.0	2.0	8.5			ns	2-8
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	5.5	1.5	6.5			ns	2-11
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time	4.0	1.5	5.5			ns	2-11
Is	Set Up Time High or Low D_{n} to LE	1.0	2.0				ns	2-10
${ }^{\text {H }}$	HOLD Time High or Low D_{n} to LE	1.0	1.5				ns	2-10
tw	LE Pulse Width High or Low	4.0	5.0				ns	2-9

Minimum limits are guaranteed but not tested on Propagation Delays
Capacitance $\left(\tau_{A}=+25 \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter	Typ	Max	Units	Conditions
$\mathrm{C}_{\text {in }}$	Input Capacitance	6	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{OV}$
$\mathrm{C}_{\text {out }}$	Output Capacitance	8	12	pF	$\mathrm{V}_{\text {out }}=\mathrm{OV}$

Note: This parameter is measured at characterization but not tested

