54FCT/74FCT534A

Octal D Flip-Flop with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'FCT534A is a high-speed, low-power octal D-type flipflop featuring separate D-type inputs for each flip-flop and TRI-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable ($\overline{\mathrm{OE} \text {) are common to all }}$ flip-flops. The 'FCT534A is the same as the 'FCT374A except that the outputs are inverted.

Features

- NSC 54/74FCT534A is pin and functionally equivalent to IDT 54/74FCT534A
- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- TTL input and output level compatible
- TTL inputs accept CMOS levels
- High current latch up
- $\mathrm{lol}^{2}=48 \mathrm{~mA}$ (Com), 32 mA (Mil)
- Military product compliant to MIL-STD-883

Ordering Code: See Section 8

Logic Symbols

IEEE/IEC

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

TL/F/10619-3

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$C P$	Clock Pulse Input
$\overline{\mathrm{OE}}$	TRI-STATE Output Enable Input
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	Complementary TRI-STATE Outputs

TL/F/10618-4

Functional Description

The 'FCT534A consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE complementary outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP)
transition. With the Output Enable (OE) LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{O E}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{O E}$ input does not affect the state of the flip-flops.

Logic Diagram

TL/F/10619-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.
Function Table

	Inputs		Output
$\mathbf{C P}$	OE	\mathbf{D}	$\overline{\mathbf{O}}$
Γ	L	H	L
\sim	L	L	H
L	L	X	$\overline{\mathrm{O}}_{0}$
X	H	X	Z

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
r $=$ LOW-to-HIGH Clock Transition
$Z=$ High Impedance
$\bar{\sigma}_{0}=$ Value stored from previous clock cycle

Absolute Maximum If Milltary/Aerospace specifie please contact the Nationa Office/Distributors for avallab	ings (Note 1) ices are required, iconductor Sales d specifications.
Terminal Voltage with Respect	
54FCTA	-0.5 V to +7.0 V
74FCTA	-0.5 V to +
Temperature Under Bias (TIIAS $^{\text {) }}$	
74FCTA	$-55^{\circ} \mathrm{C}$
54F	$-65^{\circ} \mathrm{C}$
Storage Temperature (TSTG)	
74FCTA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
54FCTA	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (P_{T})	0.5W
DC Output Current (lout)	120 m
Note 1: Absolute maximum ratings are those values beyond which damageto the device may occur. The databook spececifications should be met, without exception, to ensure that the system design is reliable over its power supply. temperature, and output/input loading variables. National does not recommend operation of FACTTM FCT circcuits outside databook speciications.	

Recommended Operating Conditions
Supply Voltage (VCC) 54FCTA
4.5 V to 5.5 V

74FCTA
Input Voltage
Output Voltage
Operating Temperature (T_{A})

54FCTA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
74FCTA	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	
CDIP	$175^{\circ} \mathrm{C}$
PDIP	$140^{\circ} \mathrm{C}$

DC Characteristics for 'FCTA Family Devices

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$.

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions		
		Min	Typ	Max				
V_{IH}	Minimum High Level Input Voltage	2.0			V			
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	0.8			V	$V_{C C}=$ Max		
$I_{1 H}$	Input High Current			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$		$\begin{aligned} & V_{1}=V_{C C} \\ & V_{1}=2.7 \mathrm{~V} \text { (Note 2) } \end{aligned}$	
IIL	Input Low Current			$\begin{aligned} & -5.0 \\ & -5.0 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\begin{aligned} & V_{1}=0.5 \mathrm{~V}(\text { Note } 2) \\ & V_{1}=G N D \end{aligned}$	
loz	Maximum TRI-STATE Current			$\begin{gathered} 10.0 \\ 10.0 \\ -10.0 \\ -10.0 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\begin{aligned} & V_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}(\text { Note } 2) \\ & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { (Note 2) } \\ & V_{\mathrm{O}}=\mathrm{GND} \end{aligned}$	
$V_{\text {IK }}$	Clamp Diode Voltage	-0.7		-1.2	V	$V_{C C}=M i n ; I_{N}=-18 \mathrm{~mA}$		
los	Short Circuit Current	-60	-120		mA	$V_{C C}=\operatorname{Max}$ (Note	= GND	
V OH	Minimum High Level Output Voltage	2.8 3.0 $V_{H C}$ $V_{C C}$ 2.4 4.3 2.4 4.3			V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} ; \mathrm{l}_{\mathrm{OH}}=-32 \mu \mathrm{~A}$		
					$\begin{aligned} & V_{C C}=M i n \\ & V_{I N}=V_{\mathbb{I H}} \text { or } V_{\mathbb{I L}} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-300 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}(\mathrm{Mil}) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}(\text { Com }) \end{aligned}$		
$\mathrm{V}_{\text {OL }}$	Maximum Low Level Output Voltage	GND 0.2 GND 0.2 0.3 0.5 0.3 0.5				V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}$ or V_{HC}; $\mathrm{l}_{\mathrm{LL}}=300 \mu \mathrm{~A}$	
					$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=300 \mu \mathrm{~A} \\ & \mathrm{IOL}_{\mathrm{OL}}=32 \mathrm{~mA}(\mathrm{Mil}) \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}(\mathrm{Com}) \end{aligned}$	
V_{H}	Input Hysteresis on Clock Only		200		mV			

DC Characteristics for 'FCTA Family Devices (Continued)

Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$.

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions	
		Min	Typ	Max			
ICC	Maximum Quiescent Supply Current		0.001	1.5	mA	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{I N} \geq V_{H C}, V_{I N} \leq 0.2 V \\ & f_{I}=0 \end{aligned}$	
$\Delta l_{\text {cc }}$	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{I N}=3.4 V(\operatorname{Note} 3) \end{aligned}$	
ICCD	Dynamic Power Supply Current (Note 4)		0.15	0.40	mA/MHz	$V_{C C}=M a x$ Outputs Open $\overline{O E}=G N D$ One Input Toggling 50\% Duty Cycle	$\begin{aligned} & V_{\mathbb{I N}} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
Ic	Total Power Supply Current (Note 6)		1.5	4.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ Outputs Open $\begin{aligned} & \mathrm{f} \mathrm{CP}=10 \mathrm{MHz} \\ & \mathrm{OE}=\mathrm{GND} \\ & \mathrm{f}=5 \mathrm{MHz} \end{aligned}$ One Bit Toggling 50% Duty Cycle	$\begin{aligned} & V_{I N} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
			1.8	6.0			$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$
			3.0	7.8		(Note 5) $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ Outputs Open $\begin{aligned} & \overline{O E}=\mathrm{GND} \\ & \mathrm{f}_{\mathrm{CP}}=10 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{I}}=2.5 \mathrm{MHz} \end{aligned}$ Eight Bits Toggling 50\% Duty Cycle	$\begin{aligned} & V_{I N} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
				16.8			$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.
Note 2: This parameter guaranteed but not tested.
Note 3: Per TTL driven input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$); all other inputs at V_{CC} or GND .
Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
Note 5: Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested.
Note 6: $\mathrm{I}_{\mathrm{C}}=$ I $_{\text {Quiescent }}+$ linputs $+\mathrm{I}_{\text {dynamic }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(I_{C P} / 2+f_{1} N_{1}\right)$
ICC = Quiescent Current
$\Delta I_{C C}=$ Power Supply Current for a TTL High Input $\left(V_{I N}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL inputs High
$N_{T}=$ Number of Inputs at D_{H}
ICCD $=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{\mathrm{CP}}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{\mathbf{I}}=$ Input Frequency
$N_{1}=$ Numbers of inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	54FCTA/74FCTA	74F		54FCTA	Units	Fig. No.
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{A}, V_{C C}= \\ \text { MII } \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A} V_{C C}= \\ C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$		
		Typ	$\begin{gathered} \text { Min } \\ \text { (Note 1) } \end{gathered}$	Max	Min (Note 1)\quad Max		
tplH ${ }^{\text {tpHL }}$	Propagation Delay Cp to On	4.5	1.5	6.5		ns	2-9
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \\ & \hline \end{aligned}$	Output Enable Time	5.5	1.5	6.5		ns	2-11
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Output Disable Time	4.0	1.5	5.5		ns	2-11
$\mathrm{t}_{\text {s }}$	Set Up Time High or Low Dn to CP	1.0	2.0			ns	2-10
t^{\prime}	Hold Time High or Low Dn to CP	1.0	1.5			ns	2-10
t_{w}	CP Pulse Width High or Low	4.0	5.0			ns	2-9

Note 1: Minimum limits guaranteed but not tested on propagation delays.
Capacitance $T_{A}=+25^{\circ}, f_{1}=1.0 \mathrm{MHz}$

Symbol	Parameter	Typ	Max	Units	Conditions
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	6	10	pF	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	8	12	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note: This parameter is measured at characterization but not tested.

