54FCT/74FCT574A

Octal D Flip-Flop with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'FCT574A is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ($\overline{\mathrm{OE}}$). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The 'FCT574A is functionally identical to the 'FCT374A except for the pinouts.

Features

NSC 54/74FCT574A is pin and functionally equivalent to IDT54/74FCT574A

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 'FCT374A
- TRI-STATE outputs for bus-oriented applications
- 'FCT574A has TTL-compatible inputs
- $\mathrm{IOL}=48 \mathrm{~mA}$ (Comm) and 32 mA (Mil)
- TTL inputs accept CMOS levels

Ordering Code: See Section 8
Logic Symbols

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

TL/F/10150-2

TL/F/10150-3

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
CP	Clock Pulse Input
$\overline{\mathrm{OE}}$	TRI-STATE Output Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	TRI-STATE Outputs

Functional Description

The 'FCT574A consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{O E}$) LOW, the contents of the eight flip-flops are available at the outputs. When $\overline{\text { OE }}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Function Table

Inputs		Internal	Outputs	Function	
$\overline{\text { OE }}$	CP	D	Q		
H	H	L	NC	Z	Hold
H	H	H	NC	Z	Hold
H	-	L	L	Z	Load
H		H	H	Z	Load
L	-	L	L	L	Data Available
L	H	H	H	H	Data Available
L	H	L	NC	NC	No Change in Data
L	H	H	NC	NC	No Change in Data

[^0]
Logic Diagram

TL/F/10150-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Recommended Operating Conditions

Supply Voltage (VCC)	
54FCTA	4.5 V to 5.5 V
74FCTA	4.75 V to 5.25 V
Input Voltage	0 V to V_{CC}
Output Voltage	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	
54FCTA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
74FCTA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature ($\left.\mathrm{T}_{\mathrm{J}}\right)$	
CDIP	$175^{\circ} \mathrm{C}$
PDIP	$140^{\circ} \mathrm{C}$

DC Characteristics for 'FCTA Family Devices

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$

DC Characteristics for 'FCTA Family Devices

Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ (Continued)

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions	
		Min	Typ	Max			
Icc	Maximum Quiescent Supply Current		0.001	1.5	mA	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{I N} \geq V_{H C}, V_{I N} \leq 0.2 \mathrm{~V} \\ & f_{I}=0 \end{aligned}$	
$\Delta l_{\text {cc }}$	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N}=3.4 V(\text { Note } 3) \end{aligned}$	
ICCD	Dynamic Power Supply Current (Note 4)		0.15	0.25	mA/MHz	$V_{C C}=M a x$ Outputs Open $\overline{O E}=G N D$ One Input Toggling 50\% Duty Cycle	$\begin{aligned} & V_{\mathbb{I N}} \geq V_{H C} \\ & V_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \end{aligned}$
Ic	Total Power Supply Current (Note 6)		1.5	4.0	mA	$V_{C C}=\operatorname{Max}$ Outputs Open $\begin{aligned} & \overline{O E}=\mathrm{GND} \\ & \mathrm{f}_{\mathrm{I}}=5.0 \mathrm{MHz} \end{aligned}$ One Bit Toggling 50\% Duty Cycle	$\begin{aligned} & V_{\mathbb{I N}} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
			1.8	6.0			$\begin{aligned} & V_{\mathbb{I N}}=3.4 V \\ & V_{I N}=G N D \end{aligned}$
			3.0	7.8		(Note 5) $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ Outputs Open $\begin{aligned} & \overline{O E}=G N D \\ & \mathrm{f}_{\mathrm{CD}}=10 \mathrm{MHz} \\ & \mathbf{f}_{\mathrm{l}}=2.5 \mathrm{MHz} \end{aligned}$ Eight Bits Toggling 50\% Duty Cycle	$\begin{aligned} & V_{\mathbb{I N}} \geq V_{H C} \\ & V_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \end{aligned}$
				16.8			$\begin{aligned} & V_{I N}=3.4 V \\ & V_{I N}=G N D \end{aligned}$

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.
Note 2: This parameter guaranteed but not tested.
Note 3: Per TTL driven input $\left(V_{I N}=3.4 \mathrm{~V}\right)$; all other inputs at $V_{C C}$ or GND.
Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
Note 5: Values for these conditions are examples of the lcc formula. These limits are guaranteed but not tested.
Note 6: $\mathrm{IC}_{\mathrm{C}}=\mathrm{I}_{\text {QUIESCENT }}+\mathrm{I}_{\text {INPUTS }}+$ I DYNAMIC
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{C P} / 2+i_{1} N_{1}\right)$
ICC = Quiescent Current
$\Delta I_{C C}=$ Power Supply Current for a TTL High Input $\left(V_{I N}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL inputs High
$N_{T}=$ Number of Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
${ }^{\prime} \mathrm{CP}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{i}=$ Input Frequency
$N_{1}=$ Number of Inputs at i_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	54FCTA/74FCTA					Units	Fig. No.
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{A}, V_{C C}=C o m \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=M i l \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Typ	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to O_{n}	4.5	2.0	6.5			ns	2-8
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	5.5	1.5	6.5			ns	2-11
$\begin{aligned} & \text { tpHZ } \\ & t_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output Disable Time	4.0	1.5	5.5			ns	2-11
${ }^{\text {t }}$ U	Set-Up Time High or Low D_{n} to CP	1.0	2.0				ns	2-10
${ }^{\text {th }}$	Hold Time High or Low D_{n} to CP	0.5	1.5				ns	2-10
tw	CP Pulse Width High or Low	4.0	5.0				ns	2-9

Note 1: Minimum limits are guaranteed but not tested on propagation delays.
Capacitance $\left(T_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 1=1.0 \mathrm{MHz}\right)$

Symbol	Parameter (Note 1)	Typ	Max	Units	Conditions
C_{IN}	Input Capacitance	6	10	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	8	12	pF	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{OV}$

[^0]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
 L = LOW Voltage Level
 $\mathrm{X}=$ Immaterial
 z $=$ High Impedance
 J = LOW-to-HIGH Transtion
 NC $=$ No Change

