74LCX16374

Low-Voltage 16-Bit D Flip-Flop with 5V Tolerant Inputs and Outputs

General Description

The LCX16374 contains sixteen non-inverting D flip-flops with TRI-STATE ${ }^{\circledR}$ outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable (CE) are common to each byte and can be shorted together for full 16-bit operation.
The LCX16374 is designed for low voltage (3.3V) V_{CC} applications with capability of interfacing to a 5 V signal environment.
The LCX16374 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 6.2 ns tPD max, 20μ A Icco max
- 5V tolerant inputs and outputs
- Power down high impedance inputs and outputs
- 2.0V-3.6V VCC supply operation
- $\pm 24 \mathrm{~mA}$ output drive
- Implements patented Quiet SeriesTM noise/EMI reduction circuitry
- Functionally compatible with the 74 series 16374
- Latch-up performance exceeds 500 mA
- ESD performance:

Human body model > 2000V Machine model $>200 \mathrm{~V}$

Logic Symbol

TL/F/12003-1

Pin Names	Description
$\overline{O E}_{n}$	Output Enable Input (Active Low)
$C P_{n}$	Clock Pulse Input
$I_{0}-I_{15}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{15}$	Outputs

	SSOP	TSSOP
Order Number	74LCX16374MEA	74LCX16374MTD
	74LCX16374MEAX	74LCX16374MTDX
See NS Package Number	MS48A	MTD48

Connection Diagram
Pin Assignment for
SSOP and TSSOP
$C_{0 E_{1}}-1$

TL/F/12003-2

Functional Description

The LCX16374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16 -bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (C_{n}) transition. With the Output Enable $\left(\overline{O E}_{n}\right)$ LOW, the contents of the flip-flops are available at the outputs. When $\overline{\mathrm{O}} \mathrm{E}_{\mathrm{n}}$ is HIGH, the outputs go to the high impedance state. Operation of the $O E_{n}$ input does not affect the state of the flipflops.

Truth Tables

	Inputs		Outputs
$\mathrm{CP}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}-\mathrm{I}_{\mathbf{7}}$	$\mathrm{O}_{\mathbf{0}}-\mathrm{O}_{\mathbf{7}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

Inputs			
$\mathrm{CP}_{\mathbf{2}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{I}_{8}-\mathrm{I}_{\mathbf{1 5}}$	$\mathrm{O}_{\mathbf{8}}-\mathrm{O}_{\mathbf{1 5}}$
Γ	L	H	H
L	L	L	L
L	L	X	O_{0}
X	H	X	Z

H = High Voltage Level
L = Low Voltage Level
$X=$ Immaterial
$Z=$ High Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH to LOW of CP

Logic Diagrams

Byte 1 (0:7)

Byte 2 (8:15)

TL/F/12003-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Symbol	Parameter	Value	Conditions	Units
VCC	Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{0}	DC Output Voltage	-0.5 to +7.0	Output in TRI-STATE	V
		-0.5 to $V_{C C}+0.5$	Output in High or Low State (Note 2)	V
IIK	DC Input Diode Current	-50	$V_{1}<$ GND	mA
lok	DC Output Diode Current	$\begin{array}{r} -50 \\ +50 \\ \hline \end{array}$	$\begin{aligned} & V_{O}<G N D \\ & V_{O}>V_{C C} \end{aligned}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current per Supply Pin	± 100		mA
IGND	DC Ground Current per Ground Pin	± 100		mA
TSTG	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: IO Absolute Maximum Rating must be observed.
Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
VCC	Supply Voltage $\begin{array}{r}\text { Operating } \\ \text { Data Retention }\end{array}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0	5.5	V
V_{0}	Output Voltage HIGH or LOW State TRI-STATE	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} V_{C C} \\ 5.5 \end{gathered}$	V
$\mathrm{lOH}^{\prime} \mathrm{lOL}$	$\begin{array}{lr} \text { Output Current } & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ \hline \end{array}$		$\begin{aligned} & \pm 24 \\ & \pm 12 \end{aligned}$	mA
T_{A}	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Edge Rate, $\mathrm{V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=3.0 \mathrm{~V}$	0	10	ns/V

DC Electrical Characteristics

Symbol	Parameter	Conditions	VCc (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
V_{IH}	HIGH Level Input Voltage		2.7-3.6	2.0		V
$V_{\text {IL }}$	LOW Level Input Voltage		2.7-3.6		0.8	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		V
		$\mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		V
		$\mathrm{IOH}=-24 \mathrm{~mA}$	3.0	2.2		V
V_{OL}	LOW Level Output Voltage	$\mathrm{IOL}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0		0.4	V
		$\mathrm{IOL}^{2}=24 \mathrm{~mA}$	3.0		0.55	V
1	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
loz	TRI-STATE Output Leakage	$\begin{aligned} & 0 \leq V_{O} \leq 5.5 V \\ & V_{1}=V_{I H} \text { or } V_{I L} \end{aligned}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
loff	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		100	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	$V_{1}=V_{C C}$ or GND	2.7-3.6		20	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 20	$\mu \mathrm{A}$
$\Delta l_{\text {cc }}$	Increase in Icc per Input	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				Units
		$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	170				MHz
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Propagation Delay CP to O_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	ns
$t_{P Z L}$ t_{PZH}	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.3 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.2 \\ & \hline \end{aligned}$	ns
ts	Setup Time	2.5		2.5		ns
t_{H}	Hold Time	1.5		1.5		ns
tw	Pulse Width	3.0		3.0		ns
${ }^{\text {t OSHL }}$ tosth	Output to Output Skew (Note 1)		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			ns

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two seperate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (LOSHU or LOW to HIGH (LOSLH). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak V_{OL}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V
Volv	Quiet Output Dynamic Valley V OL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
$\mathrm{C}_{I N}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=O$ Open, $\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{F}=10 \mathrm{MHz}$	20	pF

74LCX16374 Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

