

Functional Description

The LCX257 is a quad 2-input multiplexer with 3-STATE outputs. It selects four bits of data from two sources under control of a Common Data Select input. When the Select input is LOW, the $\mathrm{I}_{0 x}$ inputs are selected and when Select is HIGH, the $I_{1 x}$ inputs are selected. The data on the selected inputs appears at the outputs in true (noninverted) form. The device is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{OE}} \cdot\left(1_{1 \mathrm{a}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{Oa}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{OE}} \cdot\left(1_{1 \mathrm{~b}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{ob}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathrm{Z}_{\mathrm{c}}=\overline{\mathrm{OE}} \cdot\left(1_{1 \mathrm{c}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{Oc}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathrm{Z}_{\mathrm{d}}=\overline{\mathrm{OE}} \cdot\left(1_{1 \mathrm{~d}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{Od}} \cdot \overline{\mathrm{~S}}\right)
\end{aligned}
$$

When the Output Enable ($\overline{\mathrm{OE}}$) is HIGH, the outputs are forced to a high impedance state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure the Output Enable signals to 3-STATE devices whose outputs are tied together are designed so there is no overlap.

Truth Table

Output Enable	Select Input	Data Inputs		Outputs
$\overline{\text { OE }}$	S	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	Z
H	X	X	X	Z
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$Z=$ High Impedance

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Value	Conditions	Units
V_{CC}	Supply Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	Output in High or Low State (Note 2)	V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current	-50	$\mathrm{~V}_{1}<\mathrm{GND}$	mA
I_{OK}	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	
		+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
I_{O}	DC Output Source/Sink Current	± 50		mA
I_{CC}	DC Supply Current per Supply Pin	± 100		mA
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current per Ground Pin	± 100		mA
$\mathrm{~T}_{\text {STG }}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating
Conditions" table will define the conditions for actual device operation.
Note 2: I_{0} Absolute Maximum Rating must be observed
Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
V_{IH}	HIGH Level Input Voltage		2.7-3.6	2.0		V
V_{IL}	LOW Level Input Voltage		2.7-3.6		0.8	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		V
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		V
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{IOL}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	V
1	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
I_{Oz}	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OFF }}$	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
I_{Cc}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	2.7-3.6		10	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	Increase in I_{CC} per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$				Units
		$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	1.5	7.0	1.5	8.5	ns
tpLH	$\mathrm{S} \rightarrow \mathrm{Z}_{\mathrm{n}}$	1.5	7.0	1.5	8.5	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	1.5	6.0	1.5	6.5	ns
tPLH	$\mathrm{I}_{\mathrm{n}} \rightarrow \mathrm{Z}_{\mathrm{n}}$	1.5	6.0	1.5	6.5	
$\mathrm{t}_{\text {PzL }}$	Output Enable Time	1.5	7.0	1.5	8.5	ns
$t_{\text {PzH }}$	$\overline{\mathrm{OE}} \rightarrow \mathrm{Z}_{\mathrm{n}}$	1.5	7.0	1.5	8.5	
tpLz	Output Disable Time	1.5	5.5	1.5	6.0	ns
	$\overline{\mathrm{OE}} \rightarrow \mathrm{Z}_{\mathrm{n}}$	1.5	5.5	1.5	6.0	
$\mathrm{t}_{\text {OSHL }}$	Output to Output Skew (Note 4)		1.0			ns
$\mathrm{t}_{\text {OSLH }}$			1.0			

Note 4: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW to HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak V_{OL}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	-0.8	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
C_{O}	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	25	pF

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead (0.150" WIde) Molded Small Outline Package, JEDEC Package Number M16A

16-Lead Molded Small Outline Package, EIAJ
Package Number M16D
74LCX257 Low Voltage Quad 2-Input Multiplexer with 5V Tolerant Inputs and Outputs

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

