National
Semiconductor

74LCX374

Low-Voltage Octal D Flip-Flop with 5V Tolerant Inputs and Outputs

General Description

The LCX374 consists of eight D-type flip-flops featuring separate D-type inputs for each flip-flop and TRI-STATE® outputs for bus-oriented applications. A buffered clock (CP) and Output Enable ($\overline{\mathrm{OE}}$) are common to all flip-flops. The LCX374 is designed for low-voltage (3.3V) V CC applications with capability of interfacing to a 5 V signal environment.
The LCX374 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs

■ Ideal for low power/low noise 2.7 V to 3.6 V applications

- Power-down static overvoltage protection on inputs and outputs
- Outputs source/sink 24 mA
- Guaranteed simultaneous switching noise level
- Available in SOIC JEDEC, SOIC EIAJ and TSSOP
- Implements patented Quiet Series noise/EMI reduction circuitry
- Functionally compatible with the 74 series 374
- Latchup performance exceeds 300 mA
- ESD performance:

Human Body Model > 2000V
Machine Model > 250V

Ordering Code: See Section 11

Logic Symbols

Connection Diagram
Pin Assignment for

IEEE/IEC

SOIC and TSSOP

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$C P$	Clock Pulse Input
$\overline{O E}$	Output Enable Input
$\mathrm{O}_{0}-O_{7}$	TRI-STATE Outputs

	SOIC JEDEC	SOIC EIAJ	TSSOP JEDEC
Order Number	74LCX374WM 74LCX374WMX	74LCX374SJ 74LCX374SJX	74LCX374MTCX
See NS Package Number	M20B	M20D	MTC20

Preliminary Data: National Semiconductor reserves the right to make changes at any time without notice.

Functional Description

The LCX374 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE})}$ LOW, the contents of the eight flipflops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the $\overline{O E}$ input does not affect the state of the flip-flops.

Truth Table

Inputs			Outputs
$\mathbf{D}_{\mathbf{n}}$	$\mathbf{C P}$	$\overline{\mathbf{O E}}$	$\mathbf{O}_{\mathbf{n}}$
H	-	L	H
L	-	L	L
X	L	L	$\mathrm{O}_{\mathbf{0}}$
X	X	H	Z

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
Z = High Impedance
= LOW-to-HIGH Transition
$\mathrm{O}_{0}=$ Previous O_{0} belore HIGH to LOW of CP

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Note 2: IO Absolute Maximum Rating must be observed.

Recommended Operating Conditions
Supply Voltage
Operating
2.0 V to 3.6 V

Data Retention Only
1.5 V to 3.6 V

Input Voltage (V_{1})
OV to 5.5 V
Output Voltage (VO)
Output in Active State Output in "OFF" State

OV to V_{CC} OV to 5.5 V
Output Current $l_{\mathrm{OH}} / \mathrm{IOL}$
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V
$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.0 V
$\pm 24 \mathrm{~mA}$
$\pm 12 \mathrm{~mA}$
Free Air Operating Temperature $\left(T_{A}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Ratge ($\Delta \mathrm{t} / \Delta \mathrm{V}$)
$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$10 \mathrm{~ns} / \mathrm{V}$

DC Electrical Characteristics

Symbol	Parameter	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Max		
V_{IH}	High Level Input Voltage	2.7-3.6	2.0		V	$\begin{aligned} & V_{\text {OUT }} \leq 0.1 \mathrm{~V} \text { or } \\ & \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Low Level Input Voltage	2.7-3.6		0.8		
V_{OH}	High Level Output Voltage	$\begin{gathered} 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.2 \\ 2.4 \\ 2.2 \\ \hline \end{gathered}$		V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$
V_{OL}	Low Level Output Voltage	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \end{gathered}$		$\begin{gathered} 0.2 \\ 0.4 \\ 0.55 \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
1	Input Leakage Current	2.7-3.6		± 5.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$
loz	TRI-STATE Output Leakage	2.7-3.6		± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & 0 \leq V_{O} \leq 5.5 \mathrm{~V} \\ & V_{1}=V_{I H} \text { or } V_{I L} \end{aligned}$
IOFF	Power Off Leakage Current	0		100	$\mu \mathrm{A}$	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$
$I_{C C}$	Quiescent Supply Current	2.7-3.6		10	$\mu \mathrm{A}$	$V_{1}=V_{\text {CC }}$ or GND
				± 10	$\mu \mathrm{A}$	$3.6 \leq\left(V_{1}, V_{0}\right) \leq 5.5 \mathrm{~V}$
$\Delta l_{\text {CC }}$	Increase in Icc per Input	2.7-3.6		500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{C C}-0.6 \mathrm{~V}$

AC Electrical Characteristics: See Section 2 for Test Methodology

Symbol	Parameter	$V_{C C}$ (V)	$\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Max (Note 2)	
$t_{\text {PHL }}$ tple	Propagation Delay CP to Output	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & t_{\mathrm{PHZ}} \\ & t_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	ns
t_{s}	Setup Time	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		ns
t_{H}	Hold Time	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		ns
tw	Pulse Width	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$		ns
tOSHL, tosin	Output to Output Skew (Note 1)	3.0		1.0	ns

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (LOSHU) or LOW to HIGH (LOSLH). Parameter guaranteed by design.
Note 2: The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.
Dynamic Switching Characteristics: See Section 2 for Test Methodology

Symbol	Parameter	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units	Conditions
			Typical		
$V_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	3.3	0.8	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$
VoLV	Quiet Output Dynamic Valley V_{OL}	3.3	0.8	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$

Capacitance

Symbol	Parameter	Typical	Units	Conditions
C_{IN}	Input Capacitance	7	pF	$\mathrm{V}_{\mathrm{CC}}=O \mathrm{pen}$ $\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	8	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}
C_{PD}	Power Dissipation Capacitance	32	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC} $\mathrm{F}=10 \mathrm{MHz}$

