National Semiconductor

74LCX573

Octal Latch with 5V Tolerant Inputs and Outputs

General Description

The 'LCX573 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable ($\overline{\mathrm{OE}}$) inputs.
The 'LCX573 is functionally identical to the 'LCX373 but has inputs and outputs on opposite sides.
The 'LCX573 is designed for low voltage (3.3V) applications with capability of interfacing to a 5 V signal environment. The 'LCX573 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5 V tolerant inputs and outputs
- 7.0 ns tpD max, $10 \mu \mathrm{~A}$ ICCQ max
- Power down high impedance inputs and outputs
- $2.0 \mathrm{~V}-3.6 \mathrm{~V}$ VCC supply operation
- $\pm 24 \mathrm{~mA}$ output drive
- Implements patented Quiet Series™ noise/EMI reduction circuitry
- Functionally compatible with 74 series 573
- Latch-up performance exceeds 500 mA
- ESD performance:

Human body model > 2000V
Machine model > 200V

Logic Symbols

Connection Diagrams

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
LE	Latch Enable Input
$\overline{\mathrm{OE}}$	TRI-STATE Output Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	TRI-STATE Latch Outputs

	SOIC JEDEC	SOIC EIAJ	SSOP TYPE II	TSSOP JEDEC
Order Number	74LCX573WM 74LCX573WMX	74LCX573SJ	74LCX573MSA	74LCX573MTC
74LCX573SJX	74LCX573MSAX	74LCX573MTCX		
See NS Package Number	M20B	M20D	MSA20	MTC20

Functional Description

The 'LCX573 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable ($\overline{\mathrm{OE}}$) input. When $\overline{\mathrm{OE}}$ is LOW, the buffers are enabled. When $\overline{O E}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

Inputs			Outputs
$\overline{O E}$	LE	D	$\mathbf{O}_{\mathbf{n}}$
L	H	H	H
L	H	L	L
L	L	X	O_{0}
H	X	X	Z

[^0]
Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
if Millitary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Symbol	Parameter	Value	Conditions	Units
$V_{C C}$	Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{0}	DC Output Voltage	-0.5 to +7.0	Output in TRI-STATE	V
		-0.5 to $V_{C C}+0.5$	Output in High or Low State (Note 2)	V
IIK	DC Input Diode Current	-50	$V_{1}<$ GND	mA
lok	DC Output Diode Current	$\begin{aligned} & -50 \\ & +50 \end{aligned}$	$\begin{aligned} & V_{0}<G N D \\ & V_{0}>V_{C C} \end{aligned}$	mA
10	DC Output Source/Sink Current	± 50		mA
lCC	DC Supply Current per Supply Pin	± 100		mA
IGND	DC Ground Current per Ground Pin	± 100		mA
TSTG	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: I_{O} Absolute Maximum Rating must be observed.
Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
$V_{C C}$	Supply Voltage Operating Data Retention	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0	5.5	V
V_{O}	Output Voltage HIGH or LOW State TRI-STATE	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} V_{C C} \\ 5.5 \end{gathered}$	V
$\mathrm{IOH}^{\prime} \mathrm{OL}$	Output Current $\quad \begin{array}{r}V_{C C}=3.0 \mathrm{~V}-3.6 \mathrm{~V} \\ V_{C C}=2.7 \mathrm{~V}\end{array}$		$\begin{aligned} & \pm 24 \\ & \pm 12 \end{aligned}$	mA
$\mathrm{T}_{\text {A }}$	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	ns/V

DC Electrical Characteristics

Symbol	Parameter	Conditions	$V_{c c}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
V_{IH}	HIGH Level Input Voltage		2.7-3.6	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		2.7-3.6		0.8	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		V
		$\mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		V
		$\mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		V
VOL	LOW Level Output Voltage	$\mathrm{lOL}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	V
		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0		0.4	V
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	V
1	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
loz	TRI-STATE Output Leakage	$\begin{aligned} & 0 \leq V_{O} \leq 5.5 \mathrm{~V} \\ & V_{1}=V_{I H} \text { or } V_{\text {IL }} \end{aligned}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
loff	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		100	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.7-3.6		10	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 10	$\mu \mathrm{A}$
$\Delta l_{\text {cc }}$	Increase in Icc per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				Units
		$\mathrm{V}_{\text {cC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}} \\ & t_{\mathrm{PLLH}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	ns
t_{PHL} $t_{\mathrm{P} L \mathrm{H}}$	Propagation Delay LE to O_{n}	$\begin{array}{r} 1.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & t_{\mathrm{PZL}} \\ & \text { t }_{\mathrm{PRZH}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & \hline 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 1.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	ns
ts	Setup Time, D_{n} to LE	2.5		2.5		ns
t_{H}	Hold Time, D_{n} to LE	1.5		1.5		ns
tw	LE Pulse Width	3.3		3.3		ns
toshl tosth	Output to Output Skew (Note 1)		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			ns

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (lOSHD) or LOW to HIGH (tOSLH).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak V ${ }_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley V OL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
$\mathrm{C}_{\mathbb{N}}$	Input Capacitance	$\mathrm{V}_{C C}=O$ Pen, $\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, F=10 \mathrm{MHz}$	25	pF

74LCX573 Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

[^0]: $\mathrm{H}=\mathrm{HIGH}$ Voltage
 $L=$ LOW Voltage
 $z=$ High Impedance
 $X=$ Immaterial
 $\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW transition of Latch Enable

