54S/74S253 54LS/74LS253
 DUAL 4-INPUT MULTIPLEXER
 (With 3-State Outputs)

DESCRIPTION - The '253 is a dual 4-input multiplexer with 3-state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable ($\overline{\mathrm{OE}}$) inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- NON-INVERTING 3-STATE OUTPUTS

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	$\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$
		$\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	
Plastic DIP (P)	A	74S253PC, 74LS253PC		9B
Ceramic DIP (D)	A	74S253DC, 74LS253DC	54S253DM, 54LS253DM	6B
Flatpak (F)	A	74S253FC, 74LS253FC	54S253FM, 54LS253FM	4L

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74S (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW
10a-13a	Side A Data Inputs	1.25/1.25	0.5/0.25
lob- 13 b	Side B Data Inputs	1.25/1.25	0.5/0.25
So_{0}, S_{1}	Common Select Inputs	1.25/1.25	0.5/0.25
OE_{a}	Side A Output Enable Input (Active LOW)	1.25/1.25	0.5/0.25
$\overline{O E}_{\text {b }}$	Side B Output Enable Input (Active LOW)	1.25/1.25	0.5/0.25
$\mathrm{Za}, \mathrm{Zb}_{\mathrm{b}}$	3-State Outputs	$162 / 12.5$ (50)	$\begin{array}{r} 65 / 5.0 \\ (25) /(2.5) \end{array}$

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$ GND $=P$ in 8

FUNCTIONAL DESCRITION - This device contains two identical 4-input multiplexers with 3-state outputs. They select two bits from four sources selected by common select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The 4 -input multiplexers have individual Output Enable ($\overline{\mathrm{OE}}, \overline{O E}_{b}$) inputs which when HIGH, force the outputs to a high impedance (high Z) state. This device is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below:

$$
\begin{aligned}
& Z_{a}=\bar{O} \bar{E}_{a} \cdot\left(l_{0 a} \cdot \bar{S}_{1} \bullet \bar{S}_{0}+l_{1 a} \cdot \bar{S}_{1} \cdot S_{0}+l_{2 a} \cdot S_{1} \cdot \bar{S}_{0}+l_{3 a} \cdot S_{1} \cdot S_{0}\right) \\
& Z_{b}=\overline{O E}_{b} \bullet\left(I_{0 b} \bullet \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 b} \bullet \bar{S}_{1} \cdot S_{0}+I_{2 b} \cdot S_{1} \bullet \bar{S}_{0}+I_{3 b} \cdot S_{1} \cdot S_{0}\right)
\end{aligned}
$$

If the outputs of 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3 -state devices whose outputs are tied together are designed so that there is no overlap.

TRUTH TABLE

SELECTINPUTS		DATA INPUTS				OUTPUT ENABLE	OUTPUT
So	S_{1}	10	11	12	13	$\overline{\mathrm{OE}}$	Z
X	X	X	X	X	X	H	(Z)
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
H	L	X	L	X	X	L	L
H	L	X	H	X	X	L	H
L	H	X	X	L	X	L	L
L	H	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Address inputs S_{0} and S_{1} are common to both sections.
$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$(Z)=$ High Impedance

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		54/74S		54/74LS		UNITS	CONDITIONS
			Min	Max	Min	Max		
los	Output Short Circuit Current		-40	-100	-20	-100	mA	$\mathrm{Vcc}=$ Max
Icc	Power Supply Current	Outputs HIGH	7080		1214		mA	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \overline{O E}_{\mathrm{n}}=\mathrm{Gnd} \\ & \mathrm{I}_{\mathrm{n},} \mathrm{~S}_{\mathrm{n}}=4.5 \mathrm{~V} \end{aligned}$
		Outputs LOW			$\begin{aligned} & V_{C C}=M a x \\ & I_{n} . S_{n}, \overline{O E_{n}}=\text { Gnd } \end{aligned}$			
		Outputs OFF		100			$\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=\text { Max, } \overline{\mathrm{OE}} \mathrm{n}=4.5 \mathrm{~V} \\ & \mathrm{In}_{\mathrm{n}}, \mathrm{~S}_{\mathrm{n}}=\mathrm{Gnd} \end{aligned}$	

AC CHARACTERISTICS: $\mathrm{Vcc}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	54/74S	54/74LS	UNITS	CONDITIONS
		$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$	$C_{L}=15 \mathrm{pF}$		
		Min Max	Min Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay S_{n} to Z_{n}	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 29 \\ & 24 \end{aligned}$	ns	Figs. 3-1, 3-20
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay I_{n} to Z_{n}	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	ns	Figs. 3-1, 3-5
$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { tpZ } \\ \hline \end{array}$	Output Enable Time	19.5 21	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	ns	Figs. 3-3, 3-11, 3-12 $R_{L}=2 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$ ('LS253); CL=50 pF ('S253)
$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \text { tphz } \\ \text { tpLz } \end{array}$	Output Disable Time	$\begin{array}{r} 8.5 \\ 14 \end{array}$	$\begin{aligned} & 32 \\ & 22 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, ('LS253) } \\ & \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$

