

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $54 / 74$ (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $A_{0}-A_{3}$ | A Operand Inputs | $1.0 / 1.0$ | $1.0 / 0.5$ |
| $B_{0}-B_{3}$ | B Operand Inputs | $1.0 / 1.0$ | $1.0 / 0.5$ |
| $C_{0}-S_{3}$ | Carry Input | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $S_{0}-S_{3}$ | $20 / 10$ | $10 / 5.0$ |  |
| $C_{4}$ | Sum Outputs | $10 / 5.0$ | $(2.5)$ |
|  | Carry Output |  | $10 / 5.0$ |

## LOGIC SYMBOL



FUNCTIONAL DESCRIPTION - The '283 adds two 4-bit binary words (A plus B) plus the incoming carry $\mathrm{C}_{0}$. The binary sum appears on the Sum $\left(S_{0}-S_{3}\right)$ and outgoing carry $\left(C_{4}\right)$ outputs. The binary weight of the various inputs and outputs is indicated by the subscript numbers, representing powers of two.

$$
\begin{gathered}
2^{\circ}\left(A_{0}+B_{0}+C_{0}\right)+21\left(A_{1}+B_{1}\right)+2^{2}\left(A_{2}+B_{2}\right)+2^{3}\left(A_{3}+B_{3}\right)=S_{0}+2 S_{1}+4 S_{2}+8 S_{3}+16 C_{4} \\
\text { Where }(+)=\text { plus }
\end{gathered}
$$

Interchanging inputs of equal weight does not affect the operation. Thus $C_{0}, A_{0}, B_{0}$ can be arbitrarily assigned to pins 5,6 and 7 . Due to the symmetry of the binary add function, the '283 can be used either with all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). Note that if $\mathrm{C}_{0}$ is not used it must be tied LOW for active HIGH logic or tied HIGH for active LOW logic.

Example:

|  | Co | A0 | A1 | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{B}_{0}$ | $\mathrm{B}_{1}$ | $\mathrm{B}_{2}$ | B3 | So | S1 | $\mathrm{S}_{2}$ | S3 | $\mathrm{C}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Logic Levels | L | L | H | L | H | H | L | L | H | H | H | L | L | H |
| Active HIGH Active LOW | 0 1 | 0 1 | 1 0 | 0 1 | 1 0 | 1 | 0 1 | 0 1 | 1 | 1 | 1 0 | 0 1 | 0 1 | 1 |

$$
\text { Active HIGH: } 0+10+9=3+16 \quad \text { Active LOW: } 1+5+6=12+0
$$

Due to pin limitations, the intermediate carries of the ' 283 are not brought out for use as inputs or outputs. However, other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage. Figure a shows a way of making a 3-bit adder. Tying the operand inputs of the fourth adder ( $\mathrm{A}_{3}, \mathrm{~B}_{3}$ ) LOW makes $S_{3}$ dependent only on, and equal to, the carry from the third adder. Using somewhat the same principle, Figure b shows a way of dividing the '283 into a 2-bit and a 1-bit adder. The third stage adder ( $\left.\mathrm{A}_{2}, \mathrm{~B}_{2}, \mathrm{~S}_{2}\right)$ is used merely as a means of getting a carry ( $C_{10}$ ) signal into the fourth stage (via $A_{2}$ and $B_{2}$ ) and bringing out the carry from the second stage on $S_{2}$. Note that as long as $A_{2}$ and $B_{2}$ are the same, whether HIGH or LOW, they do not influence $S_{2}$. Similarly, when $A_{2}$ and $B_{2}$ are the same the carry into the third stage does not influence the carry out of the third stage. Figure $c$ shows a method of implementing a 5 -input encoder, where the inputs are equally weighted. The outputs $S_{0}, S_{1}$ and $S_{2}$ present a binary number equal to the number of inputs $I_{1}-I_{5}$ that are true. Figure $d$ shows one method of implementing a 5 -input majority gate. When three or more of the inputs $\mathrm{I}_{1}$ - $\mathrm{I}_{5}$ are true, the output $M_{5}$ is true.


Fig. a 3-Bit Adder


Fig. b 2-Bit and 1-Bit Adders


Fig. c 5-Input Encoder


Fig. d 5-Input Majority Gate

LOGIC DIAGRAM


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| Ios | Output Short Circuit Current at Sn | XM | -20 | -55 | -20 | $\begin{array}{l\|} \hline-100 \\ -100 \end{array}$ | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
| los | Output Short Circuit Current at $\mathrm{C}_{4}$ | XM |  | $\begin{aligned} & -70 \\ & -70 \end{aligned}$ | -20 -20 | $\begin{array}{l\|} \hline-100 \\ -100 \end{array}$ | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
| Icc | Power Supply Current | XM | $\begin{array}{r} 99 \\ 110 \end{array}$ |  |  | $\begin{aligned} & 39 \\ & 39 \end{aligned}$ | mA | $\begin{aligned} & \text { Vcc = Max, } \\ & \text { Inputs = Gnd ('LS283) } \end{aligned}$ $\text { Inputs }=4.5 \mathrm{~V} \text { ('283) }$ |
|  |  | XM, XC |  |  |  | 34 | mA | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { Inputs }=4.5 \mathrm{~V} \text { ('LS283) } \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=400 \Omega \end{aligned}$ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{C}_{0}$ to $\mathrm{S}_{\mathrm{n}}$ | $\begin{aligned} & 21 \\ & 21 \end{aligned}$ | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $A_{n}$ or $B_{n}$ to $S_{n}$ | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{array}{\|l\|l\|} \hline \text { tpLH } \\ \text { tPHL } \end{array}$ | Propagation Delay $\mathrm{C}_{0}$ to $\mathrm{C}_{4}$ | $\begin{aligned} & 14 \\ & 16 \end{aligned}$ | $\begin{aligned} & 17 \\ & 17 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-5 } \\ & R_{L}=780 \Omega\left({ }^{2} 283\right) \end{aligned}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $A_{n}$ or $B_{n}$ to $C_{4}$ | $\begin{aligned} & 14 \\ & 16 \end{aligned}$ | $\begin{aligned} & 17 \\ & 17 \end{aligned}$ | ns | $\begin{aligned} & \hline \text { Figs. 3-1, 3-5 } \\ & R_{L}=780 \Omega(' 283) \end{aligned}$ |

