9317B 9317C 7-SEGMENT DECODER/DRIVER

DESCRIPTION - The '17 is a seven segment decoder/driver designed to accept four inputs in 8421 BCD code and provide the appropriate outputs to drive a 7 -segment numerical display. The decoder can be used to directly drive 7-segment incandescent lamp displays and light emitting diode indicators (or indirectly drive neon, electro-luminescent, numeric displays). The '17 is available in two output current and latch voltage versions, the '17B and C.

- AUTOMATIC RIPPLE BLANKING FOR SUPPRESSION OF LEADING AND/OR TRAILING-EDGE ZEROES
- LAMP INTENSITY MODULATION CAPABILITY
- LAMP TEST FACILITY/BLANKING INPUT
- CODES IN EXCESS OF BINARY 9 DISABLE OUTPUTS

ORDERING CODE: See Section 9

PKGS	PIN OUT	COMMERCIAL GRADE	MILITARY GRADE	$\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$
		$\begin{aligned} & V_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	
Plastic DIP (P)	A	9317PC		9B
Ceramic DIP (D)	A	9317DC	9317DM	7B
Flatpak (F)	A	9317FC	9317FM	4L

LOGIC SYMBOL

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	93XX (U.L.) HIGH/LOW
$A_{0}-A_{3}$	Address Inputs	$1.0 / 1.0$
$\overline{L T}$	Lamp Test Input (Active LOW)	$5.01 / 4.0$
$\overline{\text { RBI }}$	Ripple Blanking Input (Active LOW)	$1.0 / 0.5$
$\overline{R B O}$	Ripple Blanking Output (Active LOW)	$1.5 / 1.5$
$\overline{\mathrm{a}}-\bar{g}$	Outputs	See Options

OPTIONS

PARAMETER	9317 B	9317 C
Latch Voltage	20 V	30 V
Output Current (Pins 9 through 15)	40 mA	20 mA

TRUTH TABLE

INPUTS						OUTPUTS								$\begin{gathered} \text { DECIMAL } \\ \text { OR } \\ \text { FUNCTION } \\ \hline \end{gathered}$
$\overline{\mathrm{LT}}$	$\overline{\text { RBI }}$	A0	A_{1}	A_{2}	A_{3}	$\overline{\mathrm{a}}$	$\bar{\square}$	$\overline{\mathrm{c}}$	\bar{d}	$\overline{\mathrm{e}}$	$\overline{\text { f }}$	$\overline{\mathrm{g}}$	$\overline{\text { RBO }}$	
L	X	X	X	X	X	L	L	L	L	L	L	L	H	
H	L	L	L	L	L	H	H	H	H	H	H	H	L	0
H	H	L	L	L	L	L	L	L	L	L	L	H	H	0
H	X	H	L	L	L	H	H	H	H	L	L	H	H	1
H	X	L	H	L	L	L	L	H	L	L	H	L	H	2
H	X	H	H	L	L	L	L	L	L	H	H	L	H	3
H	X	L	L	H	L	H	L	L	H	H	L	L	H	4
H	x	H	L	H	L	L	H	L	L	H	L	L	H	5
H	X	L	H	H	L	H	H	L	L	L	L	L	H	6
H	X	H	H	H	L	L	L	L	H	H	H	H	H	7
H	X	L	L	L	H	L	L	L	L	L	L	L	H	8
H	X	H	L	L	H	L	L	L	H	H	L	L	H	9
H	x	L	H	L	H	H	H	H	H	H	H	H	L	10
H	X	H	H	L	H	H	H	H	H	H	H	H	L	11
H	X	L	L	H	H	H	H	H	H	H	H	H	L	12
H	X	H	L	H	H	H	H	H	H	H	H	H	L	13
H	X	L	H	H	H	H	H	H	H	H	H	H	L	14
H	X	H	H	H	H	H	H	H	H	H	H	H	L	15

$H=H I G H$ Voltage Level $L=$ LOW Voltage Level $\quad X=$ Immaterial

FUNCTIONAL DESCRIPTION - The '17 7-segment decoder/driver accepts a 4-bit BCD 8421 code input and produces the appropriate outputs for selection of segments in a seven segment matrix display used for representing the decimal numbers $0-9$. The seven outputs ($\overline{\mathbf{a}}-\overline{\mathbf{g}}$) of the decoder select the corresponding segments in the matrix shown in Figure a. The numeric designations chosen to represent the decimal numbers are shown in Figure c. Code configurations in excess of binary nine disable the outputs.

The decoder has active LOW outputs so that it may be used directly to drive incandescent displays or light emitting diode indicators. The device has provision for automatic blanking of the leading and/or trailing-edge zeroes in a multidigit decimal number, resulting in an easily readable decimal display conforming to normal writing practice. In an eight digit mixed integer fraction decimal representation, using the automatic blanking capability, 0060.0300 would be displayed as 60.03 . Leading-edge zero suppression is obtained by connecting the Ripple Blanking Output ($\overline{\mathrm{RBO}}$) of a decoder to the Ripple Blanking Input ($\overline{\mathrm{RBI}}$) of the next lower stage device. The most significant decoder stage should have the $\overline{R B I}$ input grounded; and, since suppression of the least significant integer zero in a number is not usually desired, the $\overline{R B I}$ input of this decoder stage should be left open. A similar precedure for the fractional part of a display will provide automatic suppression of trailing-edge zeroes.

The decoder has an active LOW input Lamp Test which overrides all other input combinations and allows checking on possible display malfunctions. The $\overline{\mathrm{RBO}}$ terminal of the decoder can be OR-tied with a modulating signal via an isolating buffer to achieve pulse duration intensity modulation. A suitable signal can be generated for this purpose by forming a variable frequency multivibrator with a cross coupled pair of TTL gates. Forcing the $\overline{R B O}$ LOW will blank the display, regardless of the $\overline{L T}$ or A_{n} inputs.

Fig. b Seven segment Decoder Driving Incandescent Lamp Display

Fig. c Numerical Designations

DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: VCC $=+5.0 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER		$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$		UNITS	CONDITIONS		
			Min	Max	Min	Max	Min	Max				
Vон	Output HIGH Voltage on RBO Only		3.0		3.0		3.0		v	$\begin{aligned} & \mathrm{VCC}=4.75 \mathrm{~V} \\ & \mathrm{loH}=-70 \mu \mathrm{~A} \\ & \text { Pin } 5=\mathrm{V}_{1 \mathrm{H}} \\ & \text { Pins } 1,2,6,7=\mathrm{V} \end{aligned}$		
Vol	Output LOW Voltage on RBO Only		0.45		0.45		0.45		V	$\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \text { loL }=2.75 \mathrm{~mA} \\ & \text { Inputs at } \mathrm{V}_{\mathrm{IH}} \\ & \text { or VoL per } \\ & \text { Truth Table } \\ & \hline \end{aligned}$		
			0.45			0.45		0.45		Vcc $=4.75 \mathrm{~V}$ $\mathrm{loL}=2.4 \mathrm{~mA}$ Inputs at V_{IH} or VIL per Truth Table		
Vol	Output LOW Voltage	9317B		0.9		0.9		0.9	v	$\begin{aligned} & \mathrm{VCC}=4.75 \\ & \mathrm{lOL}=40 \mathrm{~mA} \\ & \mathrm{Pin} 3=0 \mathrm{~V} \\ & \hline \end{aligned}$		
		9317C		0.45		0.45		0.45		$\begin{aligned} & \mathrm{VCC}=4.75 \mathrm{~V} \\ & \mathrm{loL}=20 \mathrm{~mA} \\ & \mathrm{Pin} 3=0 \mathrm{~V} \end{aligned}$		
Vlatch	Output Latch Voltage	9317B	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		$\begin{aligned} & 20 \\ & 30 \end{aligned}$		$\begin{aligned} & 20 \\ & 30 \\ & \hline \end{aligned}$		V	$\mathrm{IOL}=10 \mathrm{~mA}$		
		9317C			Inputs = Open							
VIH	Input HIGH Voltage		2.0				2.0		2.0		V	Guaranteed Input HIGH Threshold
VIL	Input LOW Voltage		0.85			0.85		0.85	V	Guaranteed Input LOW Threshold		
IOH	Output HIGH Current					200		250	$\mu \mathrm{A}$	$\begin{aligned} & \text { VCc }=5.25 \mathrm{~V} \\ & \mathrm{VCEX}=30 \mathrm{~V} \\ & \text { ('17C) } 20 \mathrm{~V} \text { ('17B) } \\ & \text { Inputs at } \mathrm{V}_{\text {IH }} \\ & \text { or VIL per } \\ & \text { Truth Table } \end{aligned}$		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay					$\begin{aligned} & 500 \\ & 500 \end{aligned}$			ns	Fig. 3-20		

DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: VCC $=+5.0 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER		$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$125^{\circ} \mathrm{C}$		UNITS	CONDITIONS		
			Min	Max	Min	Max	Min	Max				
VOH	Output HIGH Voltage on RBO Only		3.0		3.0		3.0		V	$\begin{aligned} & \text { VCC }=4.5 \mathrm{~V} \\ & \text { loH }=-70 \mu \mathrm{~A} \\ & \text { Pin } 5=\mathrm{V}_{\mathrm{IH}} \\ & \text { Pins } 1,2,6,7=0 \mathrm{~V} \end{aligned}$		
Vol	Output LOW Voltage on $\overline{\text { RBO Only }}$		0.4		0.4		0.4		V	$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V} \\ & \text { loL }=3.1 \mathrm{~mA} \\ & \text { Inputs at } \mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { per } \\ & \text { Truth Table } \\ & \hline \end{aligned}$		
				0.4		0.4		0.4		$\begin{aligned} & \hline \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{lOL}=2.4 \mathrm{~mA} \end{aligned}$ Inputs at V_{IH} or VIL per Truth Table		
Vol	Output LOW Voltage	9317B		0.8		0.8		0.8	v	$\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{loL}=40 \mathrm{~mA} \\ & \mathrm{Pin} 3=0 \mathrm{~V} \end{aligned}$		
		9317C		0.4		0.4		0.4		$\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{loL}=20 \mathrm{~mA} \\ & \mathrm{Pin} 3=0 \mathrm{~V} \end{aligned}$		
Vlatch	Output Latch Voltage	9317 B	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		$\begin{aligned} & 20 \\ & 30 \end{aligned}$		$\begin{aligned} & 20 \\ & 30 \end{aligned}$		V	lout $=10 \mathrm{~mA}$		
		9317C			Inputs = Open							
VIH	Input HIGH Voltage		2.1				1.9		1.7		V	Guaranteed Input HIGH Threshold
VIL	Input LOW Voltage			1.4		1.1		0.8	V	Guaranteed Input LOW Threshold		
IOH	Output HIGH Current					200		250	$\mu \mathrm{A}$	$\begin{aligned} & \hline \mathrm{VCC}=5.5 \mathrm{~V} \\ & \mathrm{VCEX}=30 \mathrm{~V} \\ & \text { ('17C) } 20 \mathrm{~V} \text { ('17B) } \\ & \text { Inputs at } \mathrm{V}_{\text {IH }} \\ & \text { or VIL per } \\ & \text { Truth Table } \end{aligned}$		
tpLH tpHL	Propagation Delay					$\begin{aligned} & 500 \\ & 500 \end{aligned}$			ns	Fig. 3-20		

