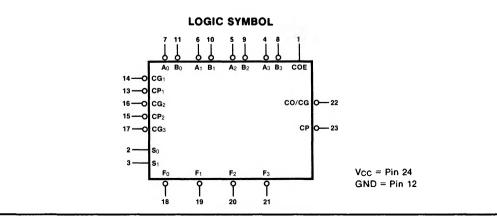
CONNECTION DIAGRAM PINOUT A

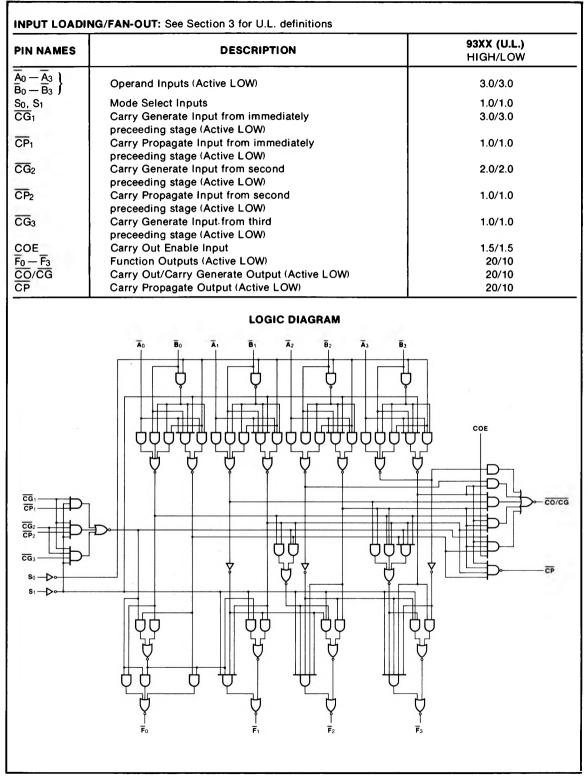
9340

4-BIT ARITHMETIC LOGIC UNIT

(With Carry Lookahead)


DESCRIPTION — The '40 is a high speed arithmetic logic unit with full onchip carry lookahead circuitry. It can perform the arithmetic operations add or subtract in parallel, or any of six logic functions on two 4-bit binary words. The internal carry lookahead provides either a ripple carry output or carry lookahead outputs. An internal carry input network accepts carry lookahead outputs from up to three other packages producing a 16-bit full carry lookahead ALU without additional gates. Ripple carries can be used between additional blocks of 12 bits to further expand the word length.

MULTIFUNCTION CAPABILITY TWO ARITHMETIC OPERATIONS — ADD, SUBTRACT SIX LOGIC FUNCTIONS — A EX OR B, A AND B, PLUS FOUR OTHERS


- ADD TWO 4-BIT WORDS IN 23 ns TYPICAL
- SUBTRACT TWO 4-BIT WORDS IN 28 ns
- LOOKAHEAD CARRY INPUT AND OUTPUT NETWORKS ON-CHIP
- EASILY EXPANDABLE TO LONGER WORD LENGTHS
- TYPICAL POWER DISSIPATION OF 425 mW

ORDERING CODE: See Section 9

PKGS	PIN OUT	COMMERCIAL GRADE	MILITARY GRADE	PKG TYPE
		$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	V _{CC} = +5.0 V ±10%, T _A = -55°C to +125°C	
Plastic DIP (P)	A	9340PC		9N
Ceramic DIP (D)	A	9340DC	9340DM	6N
Flatpak (F)	A	9340FC	9340FM	4M

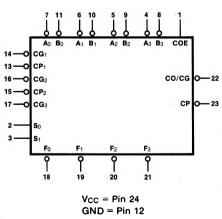
COE 24 Vcc 23 CP So 2 22 CO/CG S1 3 21 F3 A 4 20 F2 A2 5 19 F1 A1 6 18 Fo A0 7 17 CG3 B3 8 16 CG2 B2 9 15 CP2 B1 10 14 CG1 Bo 11 13 CP1 GND 12

FUNCTIONAL DESCRIPTION — The '40 accepts two 4-bit words, \overline{A}_0 , \overline{A}_1 , \overline{A}_2 , \overline{A}_3 and \overline{B}_0 , \overline{B}_1 , \overline{B}_2 , \overline{B}_3 , and produces a 4-bit output, \overline{F}_0 , \overline{F}_1 , \overline{F}_2 , \overline{F}_3 . The output function is determined by the states on the control lines S₀ and S₁. The inputs and outputs of the '40 may be considered to be active LOW or active HIGH. Logic equivalents for four representations of the '40 are shown in Figure a, b, c, and d.

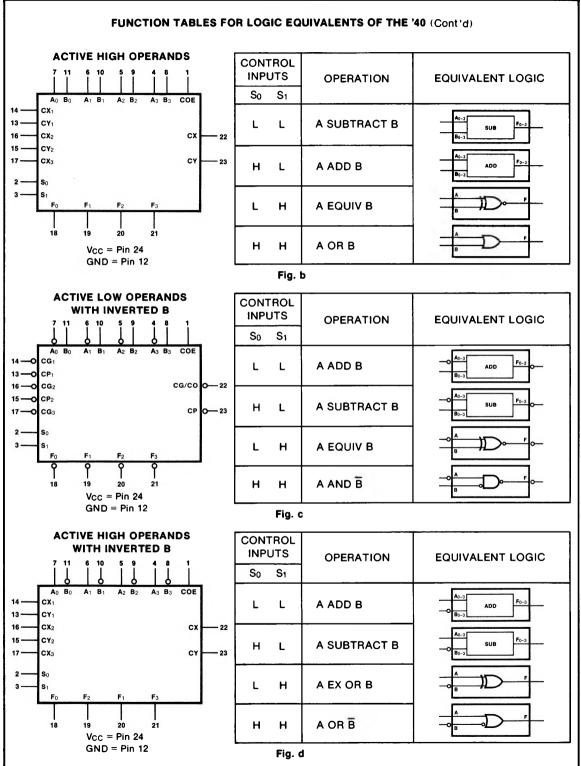
The add and subtract operations are performed on the entire word, with carries or borrows propagated between bits of different weight. The arithmetic may be performed in 1's complement, 2's complement, or sign-magnitude notation. In the logic modes, carries are inhibited and the device acts like four gates as shown.

To achieve high speed operation, the '40 is designed to be used in a carry lookahead system. Full carry lookahead is used inside the device to propagate carries between bits. Carry lookahead functions over the 4-bit block are available as outputs. These outputs are labeled $\overline{CO/CG}$ (Carry Out/Carry Generate) and \overline{CP} (Carry Propagate) on the logic symbol. The carry in to the device is formed from a set of Carry Generate and Carry Propagate inputs (equation 1) so that three '40's can be interconnected without any additional gates to form a 12-bit full carry lookahead ALU with a carry in. The pin labeled COE (Carry Out Enable) controls the $\overline{CO/CG}$ output according to equation 2. When COE is HIGH, $\overline{CO/CG}$ becomes a Carry Out which can be used to ripple carries between blocks of 12 bits. The $\overline{CG_1}$ input can be used for a ripple carry input, since this signal is sufficient to produce a carry in.

EQUATION:


(1) $(\overline{CG_1}) + (\overline{CP_1}) (\overline{CG_2}) + (\overline{CP_1}) (\overline{CP_2}) (\overline{CG_3}) = C_{in} (internal)$

(2) $\overline{CO/CG} = (\overline{CG}) + (\overline{CP}) (C_{in}) (COE)$


FUNCTION TABLES FOR LOGIC EQUIVALENTS OF THE '40

Note that when the input operands are defined as active HIGH, the carry lookahead inputs and outputs are not formally carry generate and carry propagate. Consequently, these pins have been relabled CX and CY in the active HIGH cases. However, the signals are connected in the same manner as \overline{CG} and \overline{CP} .

ACTIVE LOW OPERANDS

	CONTROL INPUTS		OPERATION	EQUIVALENT LOGIC		
	S0-	S1				
	L	L	A SUBTRACT B	A0-3 B0-3 B0-3		
-22 -23	н	L	A ADD B			
	L	н	A EX OR B			
	н	н	A AND B			
H = HIGH Voltage Level L = LOW Voltage Level						

40 DC CHARCTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 93XX SYMBOL PARAMETER UNITS CONDITIONS Min Max ΧМ 135 Power Supply Current ICC. mΑ $V_{CC} = Max$ XC 146 AC CHARACTERISTICS: V_{CC} = +5.0 V, T_A = +25°C (See Section 3 for waveforms and load configurations) 93XX SYMBOL PARAMETER $C_{L} = 15 \text{ pF}$ UNITS CONDITIONS Min Max $S_0, \overline{CG}_1, \overline{CP}, \overline{B}_1, \overline{B}_2 = 4.5 V$ 30 terн Propagation Delay $S_1, \overline{A}_0 - \overline{A}_3, \overline{B}_3 = Gnd$ ns Add Mode, Bo to Fa 30 **t**PHL Fias. 3-1, 3-5 \overline{CG}_1 , \overline{CP}_1 , $\overline{B}_3 = 4.5$ V; S₀, Propagation Delay for 37 tрiн $S_1, \overline{A}_0 - \overline{A}_3, \overline{B}_1, \overline{B}_2 = Gnd$ ns Subtract Mode, Bo to F3 32 **tPHL** Figs. 3-1, 3-4 S0, CG1, CP1, $\overline{B}_1 - \overline{B}_3 = 4.5 V; S_1, COE,$ **t**PLH Propagation Delay for 20 ns Add Mode, Bo to CO/CG 20 $\overline{A}_0 - \overline{A}_1 = Gnd$ **tPHL** Figs. 3-1, 3-5 $\overline{CG_{1}}, \overline{CP} = 4.5 \text{ V}; S_{0}, S_{1},$ **t**PLH Propagation Delay for 25 $COE, \overline{A}_0 - \overline{A}_3, \overline{B}_1 - \overline{B}_3 = Gnd$ ns Subtract Mode, Bo to CO/CG 22 **tPHL** Figs. 3-1, 3-4 So, CG1, CG2, COE, Propagation Delay for 19 $\overline{A}_0 - \overline{A}_3 = 4.5 \text{ V}; \text{ S}_1,$ **t**PLH ns Either Mode, CG₃ to CO/CG $\overline{B}_0 - \overline{B}_3 \overline{CP}_1, \overline{CP}_2 = Gnd$ 19 **tPHL**

31

29

ns

Propagation Delay for

Either Mode, CG₃ to F₃

tрLн

tPHL

Figs. 3-1, 3-5 So, CG1, CG2, B3,

Figs. 3-1, 3-5

 $\overline{A}_0 - \overline{A}_3 = 4.5 \text{ V}; \text{ S}_1,$

 $\overline{B}_0 - \overline{B}_2$, \overline{CP}_1 , $\overline{CP}_2 = Gnd$