FAIRCHILD

A Schlumberger Company

93422
 256×4-Bit Static Random Access Memory

Description

The 93422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits. It is designed for high speed cache, control and buffer storage applications. The 93422 is available in two speeds, "standard" speed and an "A" grade. The device includes full on-chip decoding, separate Data inputs and non-inverting Data outputs, as well as two Chip Select lines.

- Commercial Address Access Time

93422 - 45 ns Max

93422A - 35 ns Max

- Military Address Access Time

93422 - 60 ns Max
93422A - 45 ns Max

- Fully TTL Compatible
- Features Three State Outputs
- Power Dissipation - $0.46 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names
$\mathrm{A}_{0}-\mathrm{A}_{7}$
$D_{0}-D_{3}$
$\overline{\mathrm{CS}} 1$
$\mathrm{CS}_{2} \quad$ Chip Select Input (Active LOW) $\overline{W E} \quad$ Write Enable Input (Active LOW)
$\overline{\mathrm{OE}} \quad$ Output Enable Input (Active LOW)
$\mathrm{O}_{0}-\mathrm{O}_{3}$
Logic Symbol

Connection Diagrams
22-Pin DIP (Top View)

24-Pin Flatpak (Top View)

24-Pin Leadless Chip Carrier (Top View)

Logic Diagram

Functional Description

The 93422 is a fully decoded 1024-bit Random Access Memory organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, A0 through A7.

Two Chip Select inputs, inverting and non-inverting, are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of the chip selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. When $\overline{W E}$ is
held LOW and the chip is selected, the data at $\mathrm{D}_{0}-\mathrm{D}_{3}$ is written into the addressed location. Since the write function is level-triggered, data must be held stable for at least twSD(min) plus tw(min) plus twHD(min) to insure a valid write. To read. WE is held HIGH and the chip selected. Non-inverted data is then presented at the outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$).

The 93422 has 3 -state outputs which provide active pull-ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

Truth Table					
Inputs				Outputs	
$\overline{O E}$	$\overline{\mathrm{CS}}$	CS_{2}	$\overline{\text { WE }}$	3-State	Mode
X	H	X	X	HIGH Z	Not Selected
X	X	L	X	HIGH Z	Not Selected
L	L	H	H	Dout	READ
X	L	H	L	HIGH Z	WRITE
H	X	X	x	HIGH Z	Output Disabled

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
$\mathrm{L}=\mathrm{LOW}$ Voltage Level (.5 V)
$X=$ Don't Care (HIGH or LOW)
High $\mathbf{Z}=$ High-Impedance

DC Performance Characteristics: Over operating temperature ranges (Note 1)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
VOL	Output LOW Voltage		0.3	0.45	V	$\mathrm{VCC}=\mathrm{Min}, \mathrm{IOL}=8 \mathrm{~mA}$	
V_{IH}	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs 5	
$V_{\text {IL }}$	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs 5	
VOH	Output HIGH Voltage	2.4			V	$V_{C C}=\mathrm{Min}, \mathrm{I}_{O H}=-5.2 \mathrm{~mA}$	
Hil	Input LOW Current		-150	-300	$\mu \mathrm{A}$	$V_{\text {CC }}=$ Max, $V_{\text {IN }}=0.4 \mathrm{~V}$	
$\mathrm{IIH}^{\text {r }}$	Input HIGH Current		1.0	40	$\mu \mathrm{A}$	$V_{C C}=$ Max, $V_{\text {IN }}=4.5 \mathrm{~V}$	
$\mathrm{I}_{\text {\|HB }}$	Input Breakdown Current			1.0	mA	$V_{C C}=M a x, V_{\text {IN }}=V_{\text {cc }}$	
VIC	Input Diode Clamp Voltage		-1.0	-1.5	\checkmark	$V_{C C}=M a x, l_{I N}=-10 \mathrm{~mA}$	
$\begin{aligned} & \text { Iozh } \\ & \text { Iozl } \end{aligned}$	Output Current (HIGH Z)			$\begin{array}{r} 50 \\ -50 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=\text { Max, }, V_{\text {OUT }}=2.4 \mathrm{~V} \\ & V_{C C}=\text { Max }, V_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$	
los	Output Current Short Circuit to Ground	-10		-70	mA	VCC $=$ Max, Note 3	
Icc	Power Supply Current			$\begin{aligned} & 120 \\ & 130 \end{aligned}$	mA	Commercial Military	$V_{C C}=\operatorname{Max}$ All Inputs GND All Outputs Open

Notes

1. Typical values are at $V_{C C}=5.0 \mathrm{~V}, T_{C}=+25^{\circ} \mathrm{C}$ and maximum

The maximum address access time is guaranteed to be the wors
3. Short circuit to ground not to exceed one second

The maximum address access time is guaranteed to be the worst \quad 4. iw measured at $t_{W S A}=$ Min. $t_{W S A}$ measured at $t_{W}=$ Min case bit in the memory using a pseudorandom testing pattern.

Commercial
AC Performance Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	A		Std		Unit	Condition
		Min	Max	Min	Max		
tacs tzRCs taos tzRos taA	Read Timing Chip Select Access Time Chip Select to HIGH Z Output Enable Access Time Output Enable to HIGH Z Address Access Time ${ }^{2}$		$\begin{array}{r} 30 \\ 30 \\ 30 \\ 30 \\ \hline 35 \\ \hline \end{array}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 45 \end{aligned}$	ns ns ns ns ns	Figures 3a, 3b, 3c
tw twsD twhe twsA twha twses twhes tzws twr	Write Timing Write Pulse Width to Guarantee Writing 4 Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write 4 Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Enable to HIGH Z Write Recovery Time	$\begin{array}{r} 25 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{array}{r} 30 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$		Figure 4

Military
AC Performance Characteristics: $\mathrm{VCC}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	A		Std		Unit	Condition
		Min	Max	Min	Max		
tacs tizRS taos tzros taA	Read Timing Chip Select Access Time Chip Select to HIGH Z Output Enable Access Time Output Enable to HIGH Z Address Access Time ${ }^{2}$		$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \\ & \hline 45 \\ & \hline \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \\ & \hline 60 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 3a, 3b, 3c
tw twSD twhD twsA twha twscs twhes tzws twr	Write Timing Write Pulse Width to Guarantee Writing ${ }^{4}$ Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write ${ }^{4}$ Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Enable to HIGH Z Write Recovery Time	$\begin{array}{r} 35 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{array}{r} 40 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$		Figure 4

[^0]Fig. 1 AC Test Output Load

LOAD A

LOAD B
*Includes ilig and probe capacitance
Nole: Load A is used for all production testing.
Fig. 2 AC Test Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Address

3b Read Mode Propagation Delay from Chip Select

3c Read Mode Propagation Delay from Output Enable

Fig. 4 Write Mode Timing

Ordering Information

[^0]: Notes on preceding page

