93 H 72 HIGH SPEED 4-BIT SHIFT REGISTER (With Enable) DESCRIPTION - The ' 72 high speed 4-bit shift register is a multifunctional sequential logic block which is useful in a wide variety of register applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial and parallel-parallel data transfers. The '72 has three synchronous modes of operation: shift, parallel load and hold (do nothing). The hold capability permits information storage in the register independent of the clock.					CONNECTION DIAGRAM PINOUT A
- 60 MHz TYPICAL SHIFT FREQUENCY - SYNCHRONOUS PARALLEL DATA ENTRY - DATA HOLD (DO NOTHING) INDEPENDENT OF CLOCK - FULLY SYNCHRONOUS, EDGE-TRIGGERED - ASYNCHRONOUS MASTER RESET ORDERING CODE: See Section 9					LOGIC SYMBOL
	PI	COMMERCIAL GRADE	MILITARY GRADE	PKG	
PKGS		$\begin{aligned} & \mathrm{Vcc}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		
Plastic DIP (P)	A	93H72PC		9B	
Ceramic DIP (D)	A	93H72DC	93H72DM	6B	GND $=$ Pin 8
Flatpak (F)	A	93H72FC	93H72FM	4L	

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	$93 H$ (U.L.) HIGH/LOW
\bar{E}	Enable Input (Active LOW)	$2.0 / 2.0$
$\overline{P E}$	Parallel Enable Input (Active LOW)	$1.0 / 1.0$
$P_{0}-P_{3}$	Parallel Data Inputs	$1.0 / 1.0$
$\overline{C P}$	Clock Pulse Input	$2.0 / 2.0$
$\overline{M R}$	Master Reset Input (Active LOW)	$1.0 / 1.0$
$\overline{Q_{0}}-Q_{3}$	Serial Data Input	$1.0 / 1.0$
\bar{Q}_{3}	Parallel Outputs	$20 / 10$
	Last Stage Complementary Output	$20 / 10$

FUNCTIONAL DESCRIPTION - The '72 is a 4-bit shift register with three modes of operation: shift, parallel load and hold (do nothing). The register is fully synchronous with any output change occuring after the rising clock edge. The ' 72 features edge-triggered type characteristics on all inputs (except $\overline{M R}$) which means there are no restrictions on the activity of these inputs ($\overline{P E}, \bar{E}, P_{0}-P_{3}, D$) for logic operation except for the setup requirements prior to the LOW-to-HIGH clock transition.

The mode of operation of the ' 72 is determined by the two inputs, Parallel Enable ($\overline{\mathrm{PE}})$ and Enable ($\overline{\mathrm{E}})$ as shown in Table 1. The active LOW Enable when HIGH, places the register in the hold mode with the register flip-flops retaining their information. When the Enable is activated (LOW) the Parallel Enable ($\overline{\mathrm{PE}})$ determines whether the register operates in a shift or parallel data entry mode.

When the Enable is LOW and the Parallel Enable input is LOW the parallel inputs are selected and will determine the next condition of the register synchronously with the clock as shown in Table II. In this mode the element appears as four common clocked D flip-flops. With \bar{E} LOW and the $\overline{\text { PE input HIGH the device acts as a } 4 \text {-bit shift }}$ register with serial data entry through the D input shown in Table III. In both cases the next state of the flip-flops occurs after the LOW-to-HIGH transition of the clock input.

The asynchronous active LOW Master Reset overrides all inputs and clears the register forcing outputs $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ LOW and \bar{Q}_{3} HIGH. To provide for left shift operation, P_{3} is used as the serial data input and Q_{0} is the serial data output. The other outputs are tied back to the previous parallel inputs, with Q_{3} tied to P_{2}, Q_{2} tied to P_{1} and Q_{1} tied to Po .

LOGIC DIAGRAM

TABLE I. MODE SELECT TABLE

MODE		$\overline{M R}$	\bar{E}	$\overline{\mathrm{PE}}$	Po	P_{1}	P_{2}	P_{3}	D
Synchronous	Parallel Load	H	L	L	Parallel Data Entry	X			
	Serial Shift	H	L	H	X	X	X	X	Serial Data Entry
	Hold	H	H	L	X	X	X	X	X
	Hold	H	H	H	X	X	X	X	X
Asynchronous	Reset	L	X	X	All Outputs Set LOW $\left(\bar{Q}_{3}=\right.$ HIGH $)$				

[^0]TABLE II. PARALLEL DATA ENTRY

$P_{0}-P_{3}$	Q
INPUT @ t_{n}	$@ t_{n}+1$
L	L
H	H

TABLE III.
SERIAL DATA ENTRY

D INPUT $@ t_{n}$	Q_{0} $@ t_{n}+1$
L	L
H	H

$t_{n}=$ Present State
tn $+1=$ State after next clock
$H=$ HIGH Voltage Level
L = LOW Voltage Level

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER				UNITS	CONDITIONS
			Min	Max		
los	Output Short Circuit Current		-30	-100	mA	Vcc $=$ Max, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Icc	Power Supply Current	XM		120	mA	$V_{C C}=$ Max
		XC		135	mA	Vcc $=$ Max

AC CHARACTERISTICS: $V_{C C}=+5.0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER			UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$			
		Min	Max		
$f_{\text {max }}$	Maximum Shift Frequency	45		MHz	Figs. 3-1, 3-8
tPLH tPHL	Propagation Delay CP to Q_{n}		$\begin{aligned} & 16 \\ & 21 \end{aligned}$	ns	Figs. 3-1, 3-8
tPHL	Propagation Delay $\overline{M R}$ to Q_{n}		26	ns	Figs. 3-1, 3-16

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	93H		UNITS	CONDITIONS
		Min	Max		
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup Time HIGH or LOW D or P_{n} to CP	7.0		ns	Fig. 3-6
$\begin{aligned} & t_{s}(H) \\ & \text { is (L) } \end{aligned}$	Setup Time HIGH or LOW \bar{E} to CP	17			
$\begin{aligned} & t_{s}(H) \\ & t_{s}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW PE to CP	19		ns	Fig. 3-6
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$	Hold Time HIGH or LOW D, P_{n}, \bar{E} or $\overline{P E}$ to CP	0			
$t_{w}(\mathrm{~L})$	$\overline{\mathrm{MR}}$ Pulse Width LOW	19		ns	Fig. 3-16
trec	$\overline{\mathrm{MR}}$ Recovery Time	7.0			

[^0]: H = HIGH Voltage Level
 L = LOW Voltage Level
 $X=$ Immaterial

