1.5V FM stereo demodulator BA1362F/BA1362FS

The BA1362F and BA1362FS are FM stereo demodulator ICs designed for 1.5V audio systems. Both ICs have a PLL circuit that generates a 19kHz or 38kHz signal in synchronous with the input signal, a synchronous detector circuit that detects the presence or absence of a 19kHz pilot signal in the input signal, and a demodulation circuit that switches to divide the input signal into left and right channels. In addition, there is forced-monaural circuit that can turn the stereo signal into a monaural signal, and a stereo indicator LED driver circuit.

Applications1.5V headphone stereos

Features

- 1) Excellent low-voltage characteristics (stereo operation down to 1.0V, monaural down to 0.9V, recommended operating voltage range 1.0V to 2.5V).
- 2) Gain can be set to either 0dB or 2.5dB by the input block wiring, with no external components.
- 3) VCO stop pin provided to prevent beat during AM operation.
- 4) Channel separation controlled by the input block high-frequency cut-off filter.
- 5) Output resistor that sets the de-emphasis is on the chip (Rour $\Rightarrow 5k \Omega$).
- 6) Built-in drive circuit for stereo indicator LED.
- Good compatibility with the BA4230AFS 1.5V AM/FM IF system IC.

Block diagram

ROHM

97

Stereo multiplexers

High-frequency signal processors

BA1362F/BA1362FS

-

1

ł

●Absolute maximum ratings (Ta = 25℃)

Parameter		Symbol	Limits	Unit V	
		Vcc	3.0		
Power	BA1362F		300*1		
dissipation	BA1362F S		500*2	— mvv	
Operating temperature		Topr	-25~75	°C	
Storage temperature		Tstg	-55~125	Ĵ	

*1 Reduced by 3mW for each increase in Ta of 1°C over 25°C.

*2 Reduced by 5mW for each Increase in Ta of 1°C over 25°C.

Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min	Тур.	Max.	Unit
Supply voltage	Vcc	1.0	1.25	2.5	V

• Electrical characteristics (Ta $\approx 25^{\circ}$ C, Vcc = 1.25V, f = 1kHz, V_{IN} = 100mV, L + R = 90%, Pilot = 10%)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Quiescent current	la	1.6	4	6.2	mA		
Separation	Sep	30	35	_	dB	Input phase compensation	
Total harmonic distortion	THD		0.3	0.8	%	MAIN signal	
Channel balance	СВ	-2	0	2	dB	MONO signal	
LED ON level	VP	2.5	4.5	7.0	mVrms	PILOT signal only	
LED hysteresis	Hys		4.3	9.5	dB	-	
Input resistance	B _{IN}	4.5	8.2	12.0	kΩ	Pin 5, pin 6 shorted	
Output resistance	Rout	3.6	5.1	6.6	kΩ	_	
Input/output gain	Gv		2.5	_	dB	_	
Signal-to-noise ratio	S/N		68	_	dB		
Capture range	CR	_	±3	_	%	MAIN signal	
Forced monaural operating voltage	VCP12	_	OPEN	_		Forced release by earthing	
VCO stop voltage	Vvco14	-	0.9	_	v	-	
Pilot detector output pin pull-in current	lP	_	5	_	mA	-	
Input level	VIN	150			mV	THD=6%	

BA1362F/BA1362FS

Fig. 2

Stereo multiplexers

Circuit operation

(1) PLL circuit

The PLL circuit generates 19kHz and 38kHz signals that are synchronized with the 19kHz pilot contained in the composite signal, and uses them for the synchronous detector and as the demodulation signal for the stereo demodulation circuit.

The circuit is a closed circuit, and consists of a phase comparator, low-pass filter, VCO, and two divide-bytwo frequency dividers. The capture range of the PLL is set by the CR filter circuit connected between pins 9 and 10, and the lock range and f0 of the VCO are set by the time constant of the CR circuit connected between pin 11 and GND.

(2) Synchronous detector circuit

Synchronous detection is performed by comparing the pilot signal in the composite signal (19kHz) and the 19kHz signal generated by the PLL to detect the presence of the pilot signal. The detector output is smoothed by a filter and used to turn the LED driver and stereo demodulation circuits on and off. The value of the capacitor connected between pins 3 and 4 sets the stereo/monaural switching time.

BA1362F/BA1362FS

(3) Stereo demodulator circuit

The stereo demodulator circuit switches the composite signal between the left and right channels at 38kHz to perform stereo demodulation. The composite signal is given by the following formula.

C (t) = (L+R) + (L-R)
$$\cos \omega t + p \cos \frac{\omega t}{2}$$

 ω : sub-carrier angular frequency

p: pilot signal amplitude

$$\begin{split} \omega t = 2n \, \pi & C \ (t) = (L+R) + (L-R) = 2L \\ \omega t = (2n+1) \, \pi & C \ (t) = (L+R) - (L-R) = 2R \\ \text{The output impedance is set at 5k } \Omega, \text{ and pins 15 and} \\ 16 \text{ are connected via capacitors to GND to form the} \\ \text{de-emphasis circuit.} \end{split}$$

(4) Monaural circuit

Stereo/monaural switching is done either automatically by the level of the pilot signal, or manually forced using pins 12, 13, and 14.

1) Automatic monaural switching

Automatically switches between stereo and monaural operation depending on the level of the pilot signal included in the composite signal. Some switching hysteresis is provided for stability.

2) Forced monaural operation

Force monaural operation by making pin 12 open circuit, and release it by pulling pin 12 down to GND. Pull pin 14 up to Vcc to stop the VCO oscillation, and make it open circuit to release the VCO. Pull pin 13 up to Vcc to simultaneously stop the VCO and force monaural operation, and make it open to release them.

ROHM

BA1362F/BA1362FS

BA1362F/BA1362FS

BA1362F/BA1362FS

ROHM

103