2-channel reversible-motor driver BA6193

The BA6193 is a 2-channel motor driver for CD player changers and electric volume switches, and other applications as well. Because it uses a negative power supply, this IC uses the power supply of application products efficiently.

Applications

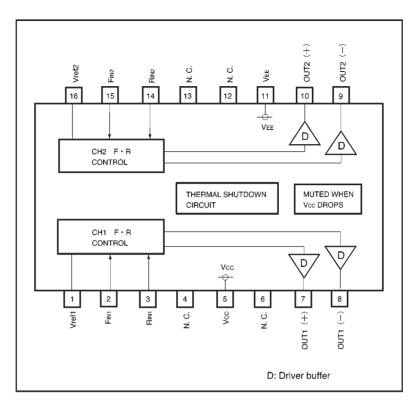
CD players and CD-ROM drives with loading features, etc.

Features

- Reversible-motor driver with dual independent channels.
- Four modes forward, reverse, stop (free rotation) and brake are output according to control logic input (two inputs).
- 3) Output voltage is set with the V_{ref} pin.
- 4) Internal power supply voltage drop mute circuit.
- 5) Internal thermal shutdown circuit.
- 6) Negative power supply.

●Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Logic input pin voltage	VFIN, VRIN	22	V
Power dissipation	Pd	1000*	mW
Operating temperature	Topr	−25 ~ + 75	င
Storage temperature	Tstg	− 55∼ + 150	Ĉ


^{*} Reduced by 10 mW for each increase in Ta of 1°C over 25°C.

• Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	7	_	16*	V
Vref pin input voltage	Vref	1.0	_	(Vcc/2) -1.0	V

^{*} Set the power supply voltage according to power dissipation.

Block diagram

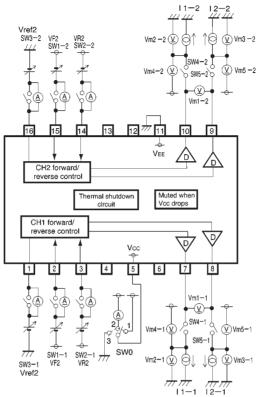
Pin descriptions

Pin No.	Pin name	Function		Pin name	Function
1	Vref1	Setting the high level voltage for channel 1 output	9	OUT2 (—)	Channel 2 output (negative)
2	Fina	Input of channel 1 forward control signal	10	OUT2 (+)	Channel 2 output (positive)
3	Rin1	Input of channel 1 reverse control signal	11	VEE	(—) power supply
4	N.C.		12	N.C.	
5	Vcc	(+) power supply	13	N.C.	
6	N.C.		14	RIN2	Input of channel 2 reverse control signal
7	OUT1 (+)	Channel 1 output (positive)	15	F _{IN2}	Input of channel 2 forward control signal
8	OUT1 (—)	Channel 1 output (negative)	16	Vref2	Setting the high level voltage for channel 2 output

Input/output circuits

Pin function	Equivalent circuit					
Logic input pin	2, 3, 14, 15 pin Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vc					
Voltage setting pin	1, 16 pin VEE					
Output pin	Positive output 7, 10 pin Negative output 8, 9 pin					

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 25°C, Vref = 2.5V)


Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply current 1	lcc1	2.1	3.3	4.3	mA	Stop mode
Supply current 2	lcc2	25	38	50	mA	Forward or reverse mode
Supply current 3	lcc3	13	20	27	mA	Brake mode
Input high level voltage	ViH	4.0	-	-	٧	Vcc = reference potential
Input low level voltage	VIL	_	_	1.0	٧	Vcc = reference potential
Output saturation voltage	Vce	_	1.4	2.1	٧	lo = 100 mA, Vref = 5 V, sum of the invalid voltages for the upper and lower transistor output
Output voltage 1 *1	Vouti	4.5	5.0	5.5	٧	Forward mode Io=100mA
Output voltage 2 *1	Vout2	-4.5	-5.0	-5.5	٧	Reverse mode Io=100mA
Output voltage 3 *1	Vouтз	-50	0	50	mV	Brake mode Io=100mA
Output voltage 4 *1	V _{OUT4}	-50	0	50	mV	Stop mode
Load regulation 1 *2	ΔVouti	_	230	350	mV	Output volt. differential between I = 400 mA and I = 100 mA
Load regulation 2 *3	ΔVouτ2	_	300	500	mV	Output volt. differential between I = 400 mA and I = 100 mA
Mute ON voltage	Vcc1	_	_	3.5	٧	Muted when Vcc falls
Mute OFF voltage	Vcc2	5.5	_	_	٧	

^{*1} Output voltage = (positive output pin voltage) - (negative output pin voltage)

^{*2} Output voltage differential 1 = difference in voltage between 400 mA Source and 100 mA Source from HIGH level output pin in forward or reverse mode

^{*3} Output voltage differential 2 = difference in voltage between 400 mA Sink and 100 mA Sink from LOW level output pin in forward or reverse mode

Measurement circuit

Note: Arrows indicate the positive current direction (Source)

Fig. 1

●Input and output truth table

FIN	Rin	OUT (+)	OUT (-)	Mode
L	Н	Н	L	Forward
Н	L	L	Н	Reverse
Н	Н	L	L	Brake
L	L	OPEN	OPEN	Stop

Application example

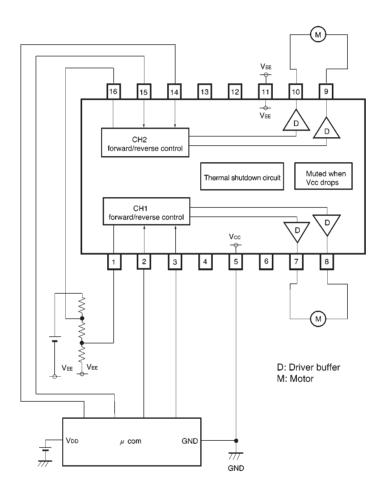


Fig. 2

Operation notes

- 1) The BA6193 has an internal shutdown circuit with hysteresis capabilities. Output current is muted when the chip temperature exceeds 175°C (typically) and restored when the chip temperature falls to 150°C (typically).
- 2) The output current is muted when the power supply voltage (V_{CC}) drops below 3.0V. During muting, the output voltage is V_{EE} .
- In the forward and reverse modes, an output voltage twice that of the reference voltage is generated.

However, normal voltage is not output when the reference voltage is below 1.0V or about Vcc/2-1.0V.

- 4) Vcc is the reference voltage for the input voltage of logic input pins. In terms of potential relative to V_{EE} , the HIGH level is (Vcc+5.0)V and the LOW level is Vcc. Fig. 6 shows each pin's potential level.
- 5) Be sure to attach a bypass capacitor to the power supply, at the base of the IC.

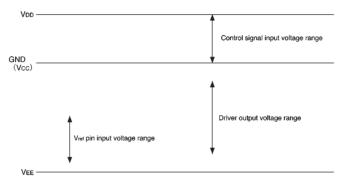


Fig. 3 Pin potential levels

Electrical characteristic curves

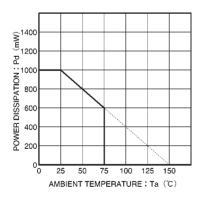


Fig. 4 Thermal derating curve

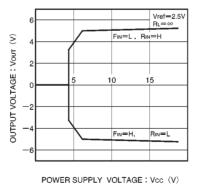


Fig. 5 Power supply voltage vs. output voltage

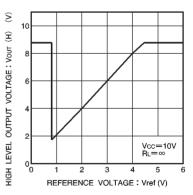
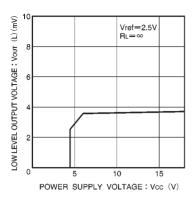



Fig. 6 V_{ref} voltage vs. high-level output voltage

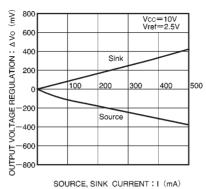
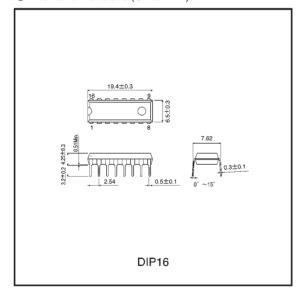



Fig. 7 Vcc vs. LOW level output pin voltage

Fig. 8 Source / sink current vs. load regulation

●External dimensions (Units: mm)

