2-channel BTL driver for CD players BA6792FP / BA6792FP-Y

The BA6792FP and BA6792FP-Y are 2-channel BTL drivers for CD player actuator drives. HSOP 28 and 25-pin packages allow for compact applications.

Applications

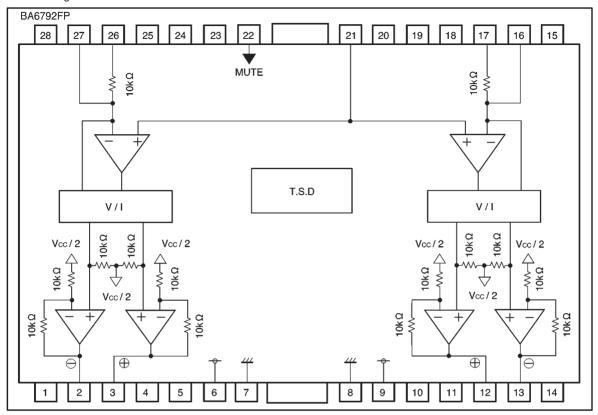
CD players and CD-ROM drives

Features

- 1) 2 channel dedicated BTL drivers.
- 2) HSOP 28 and 25-pin power packages for compact applications.
- 3) Gain is adjustable with an attached resistor.
- 4) Internal thermal shutdown circuit.

●Absolute maximum ratings (Ta = 25°C)

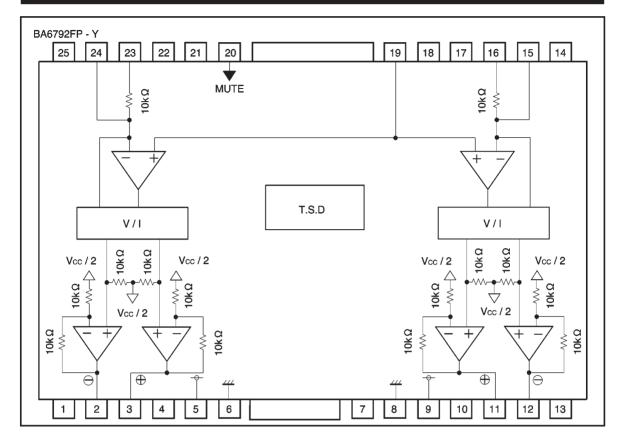
Parameter		Symbol	Limits	Unit
Power supply voltage		Vcc	18	٧
Power	BA6792FP	Pd	1700*1	mW
dissipation	BA6792FP-Y	Fu	1450* ²	IIIVV
Operating ter	nperature	Topr	−35~+85	c
Storage temp	Storage temperature		−55~ +150	Ĉ


^{*1.} When mounted on a 50 mm × 50 mm × 1 mm paper phenol PCB board. Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C.

• Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.5	_	13.5	V

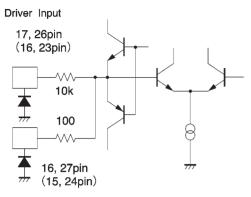
^{*2.} When mounted on a 50 mm × 50 mm × 1 mm paper phenol PCB board. Reduced by 11.6 mW for each increase in Ta of 1°C over 25°C.

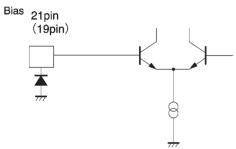

Block diagram

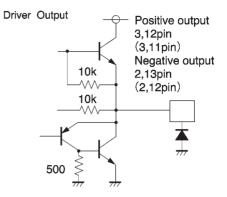
●Pin descriptions (BA6792FP)

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	N.C.	_	15	N.C.	_
2	OUT ₁ —	Channel 1 negative output	16	IN2'	Channel 2 gain adjustment input
3	OUT ₁ +	Channel 1 positive output	17	IN2	Channel 2 gain fixing input
4	N.C.	_	18	N.C.	_
5	N.C.	_	19	N.C.	_
6	Vcc	Vcc	20	N.C.	_
7	GND	Substrate ground	21	BIAS	Bias input
8	GND	Substrate ground	22	MUTE	Muting
9	Vcc	Vcc	23	N.C.	_
10	N.C.	_	24	N.C.	_
11	N.C.	_	25	N.C.	_
12	OUT ₂ +	Channel 2 positive output	26	IN1	Channel 1 gain fixing input
13	OUT2-	Channel 2 negative output	27	IN1'	Channel 1 gain adjusting input
14	N.C.	_	28	N.C.	_

^{*} Positive output and negative output is relative to the polarity of the input pins.




●Pin descriptions (BA6792FP - Y)


Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	N.C.	_		N.C.	_
2	OUT1-	Channel 1 negative output	15	IN2'	Channel 2 gain adjustment input
3	OUT1+	Channel 1 positive output	16	IN2	Channel 2 gain fixing input
4	N.C.	_	17	N.C.	_
5	Vcc	Vcc	18	N.C.	_
6	GND	Substrate ground	19	BIAS	Bias input
7	N.C.	_	20	MUTE	Muting
8	GND	Substrate ground	21	N.C.	_
9	Vcc	Vcc	22	N.C.	_
10	N.C.	_	23	IN1	Channel 1 gain fixing input
11	OUT2+	Channel 2 positive output	24	IN1'	Channel 1 gain adjusting input
12	OUT2-	Channel 2 negative output	25	N.C.	_
13	N.C.	_			

^{*} Positive output and negative output is velative to polarity of the input pins.

Pin equivalent circuit diagrams

Mute 22pin (20pin) 50k 50k

() BA6792FP-Y Pin no.

•Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 8V, f = 1KHz, R_L = 8Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current dissipation	Icc	_	4.5	7.5	mA	No load
Output offset voltage	Voo	-50	0	50	mV	_
Maximum output amplitude 1	VOM1	5.0	5.5	_	V	_
Maximum output amplitude 2	VOM2	2.7	3.0	_	V	Vcc=5V
Closed loop voltage gain	Gvc	10.5	12.0	13.5	dB	V _{IN} =BIAS±0.5V
Ripple rejection	RR	_	60	_	dB	V _{IN} =0.1Vrms, 100Hz
Slew rate	SR	_	2.0	_	V / μs	100 kHz square wave, 3 V _{P-P} output
Mute-on voltage	VMON	GND	_	0.5	V	_
Mute-off voltage	VMOFF	2.0	_	Vcc	V	_

O Not designed for radiation resistance.

Measurement circuit

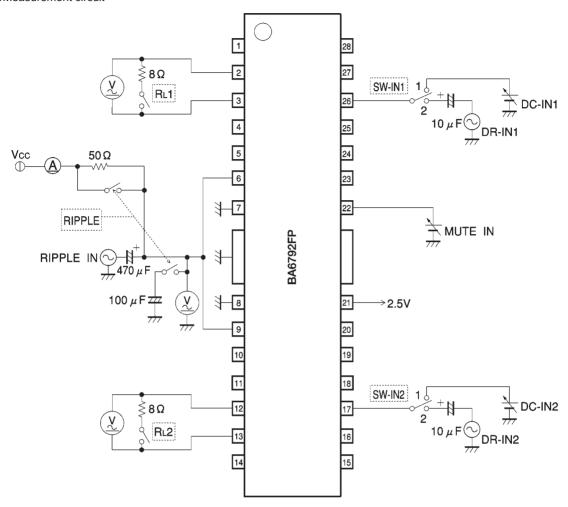


Fig.1

Application example (BA6792FP)

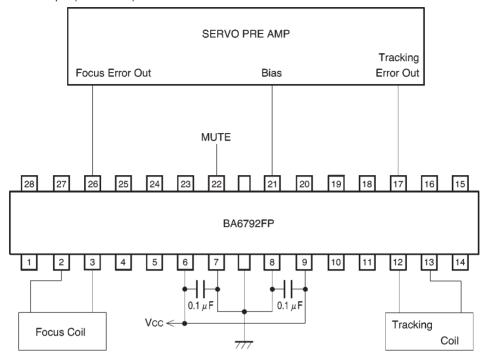


Fig. 2

Operation notes

- (1) The BA6792FP and BA6792FP-Y have an internal thermal shutdown circuit. The output current is muted when the chip temperature rises above 175°C (typically). The driver circuit is restored when the chip temperature rises above 150°C (typically).
- (2) The output current can be muted by opening the mute pin voltage or lowering it below 0.5V. This pin should be pulled up above 2.0V during normal operation.
- (3) Muting also occurs when the bias pin voltage drops below 1.4V (typically). This pin should stay above 2.0V during normal operation.
- (4) Muting occurs during thermal shutdown, mute-on operations or a drop in the bias pin voltage. In each case, only the drivers are muted. During muting, the output pins remain at the internal bias voltage, roughly (Vcc/2).
- (5) Attach a bypass capacitor (roughly $0.1\mu F$) between the power supplies, at the base of the IC.
- (6) The radiating fin is connected to the package's internal GND, but should also be connected to an external ground.

Electrical characteristic curves

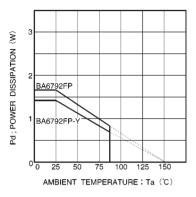


Fig. 3 Thermal derating curve

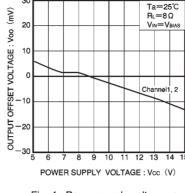


Fig. 4 Power supply voltage vs. output offset voltage

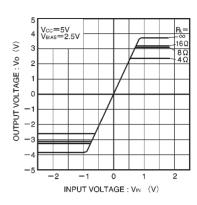


Fig. 5 Input and output characteristics (Vcc = 5V, variable load)

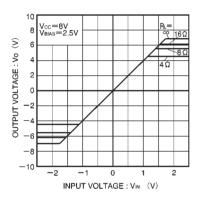


Fig. 6 Input and output characteristics (Vcc = 8 V, variable load)

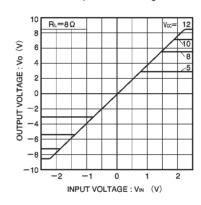
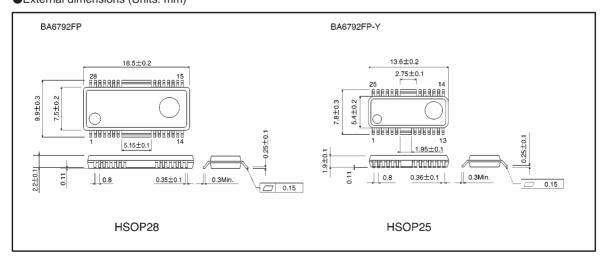



Fig. 7 Input and output characteristics (variable Vcc)

External dimensions (Units: mm)

