Audio ICs

Fluorescent display tube level meter driver, 16-point $\times 2$ channel, VU scale, bar display
 BA6800AF / BA6805A

The BA6800AF and BA6805A are two-channel, 16-point fluorescent display tube drivers for VU-scale bar-level meters.
They use a dynamic-drive system and are provided with both $A C$ and $D C$ inputs. The $A C$ input mode has a peak hold circuit.
The ICs feature a power-on mute, and the output block can directly drive fluorescent display tubes, so few external components are required.
The grid output duty cycle is $1 / 8$ for the BA6800AF and $1 / 4$ tor the BA6805A. Apart from power dissipation, all other characteristics are the same.

- Applications

Level meters for all types of AV equipment
-Features

1) Uses dynamic-drive system to display two 16-point channels. Packages are 28-pin DIP (BA6805A) and 28-pin SOP (BA6800AF)
2) $A C$ and $D C$ inputs provided. Switching function allows two-mode display.
3) Upper 12 points have peak hold function in AC mode (two seconds).
4) Power-on mute function.
5) Dynamic-drive system reduces the power consumption of the fluorescent display tube power supply.
6) Square root compression amplifier built in
-Block diagram

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Limits	Unit
Supply voltage		$V_{C C}$	7.0	V
Power dissipation	BA6805A	Pd	700*1	mW
	BA6B00AF		550*2	mW
Operating temperature		Topr	$-20 \sim 70$	${ }^{\circ} \mathrm{C}$
Storage temperature		Tstg	$-55 \sim 125$	${ }^{\circ} \mathrm{C}$
Output voltage		$\mathrm{TcCl}^{\text {, }}+\mathrm{V}_{\text {EE }}$	36	\checkmark

* 1 Reduced by 7 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
$* 2$ Reduced by 5.5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
Electrical characteristics (unless otherwise specified $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter		Symbol	Min.	Typ.	Max.	Unit	Conditions	Measurement Circuit
Supply vollage		V_{cc}	4.5	5.0	5.8	\checkmark		Fig. 1
Quiescent current		la	-	17	24	mA	-	Fig. 1
$A C$ input resistance		Rinac	175	250	325	Q	1, Эpin	Fig. 1
DC input resistance		Rivoc	7	10	13	$k \Omega$	-	Fig. 1
Oscillator frequency		foso	1.7	2.0	2.3	kHz	$\mathrm{C}=0.015 \mu \mathrm{~F}, \mathrm{R}=30 \mathrm{k} \Omega$	Fig. 1
Peak hold time		Thok	-	2	-	s	$\mathrm{fosc}=2 \mathrm{kHz}$	Fig. 1
Output duty cycle	BA6B00AF	Duty	-	1/8	-	-	$\mathrm{fosc}=2 \mathrm{kHz}$	Fig. 1
	BA6805A		-	1/4	-	-	$\mathrm{fosc}=2 \mathrm{kHz}$	Fig. 1
Grid low-level outpuit voltage		$V_{\text {Gl }}$	-	0.4	0.8	V	$\mathrm{t}_{\mathrm{a}}=5 \mathrm{~mA}$	Fig. 1
Grid output leak current		I_{G} leak	-	-	10	$\mu \mathrm{A}$	$\mathrm{Vcc}_{\mathrm{cc}}=5 \mathrm{~V}$	Fig. 1
690				Mamin				

-Electrical characteristics (unless otherwise specified $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	Measurement Circuit
Segment high-level output valtage	$\mathrm{VOH}_{\mathrm{OH}}$	3.7	4.0	-	\checkmark	$10=2 \mathrm{~mA}$	Fig. 1
Segment output leak current	loberk	-	-	10	$\mu \mathrm{A}$	$-\mathrm{V}_{E E}=-31 \mathrm{~V}$	Fig. 1
Input switching threshold	$V_{\text {TH }}$	2.2	2.5	2.8	V	AC: $\operatorname{pin} 7$ "H", DC: $\operatorname{pin} 7$ "L"	Fig. 1
$A C$ sensitivity	Vinac	250	400	630	mV	$\begin{aligned} & \mathrm{RIN}=1.5 \mathrm{k} \Omega \\ & \mathrm{AC} \text { comparator } 10 \text { on tevel } \end{aligned}$	Fig. 1
Maximum grid output current	1 cm	5	-	-	mA	V 人 $=0.8 \mathrm{~V}$	Fig. 1
Maximum segment output current	lom	2	-	-	mA	$\mathrm{V}_{\mathrm{OH}}=3.7 \mathrm{~V}$	Fig. 1
AC comparator level 16	$V_{\text {ciasc }}$	8.5	10	12	dB	Pin 11 output	Fig. 1
AC comparator level 15	$\mathrm{V}_{\text {C154C }}$	6.0	7	8.5	dB	Pin 12 output	Fig. 1
AC comparator level 14	$\mathrm{V}_{\text {Giac }}$	4.0	5	6.0	dB	Pin 13 output	Fig. 1
AC comparator level 13	$V_{\text {cisac }}$	2.5	3	4.0	dB	Pin 14 output	Fig. 1
AC comparator level 12	$V_{\text {Cl2 }}$	1.5	2	2.5	dB	Pin 15 output	Fig. 1
AC comparator level 11	$\mathrm{V}_{\text {cinac }}$	0.5	1	1.5	dB	Pin 16 output	Fig. 1
AC comparator level 10	$V_{\text {cinac }}$	-	0	-	dB	Pin 17 output	Fig. 1
AC comparator level 9	$V_{\text {cbas }}$	-1.5	-1	-0.5	dB	Pin 18 output	Fig. 1
AC comparator level 8	$V_{\text {caac }}$	-2.5	-2	-1.5	dB	Pin 19 output	Fig. 1
AC comparator level 7	$V_{\text {ciac }}$	-4.0	-3	-2.5	dB	Pin 20 output	Fig. 1
AC comparator level 6	$V_{\text {ctac }}$	-6.0	-5	-4.0	dB	Pin 21 output	Fig. 1
AC comparator level 5	Vcsac	-8.5	-7	-6.0	dB	Pin 22 output	Fig. 1
AC comparator level 4	$V_{\text {canc }}$	-15	-10	-8.5	dB	Pin 23 output	Fig. 1
AC comparator level 3	V ${ }^{\text {csac }}$	-25	-20	-15	dB	Pin 24 output	Fig. 1
AC comparator level 2	$V_{\text {czac }}$	-35	-30	-25	dB	Pin 25 output	Fig. 1
AC comparator level 1	$V_{\text {ciac }}$	-55	-40	-35	dB	Pin 26 output	Fig. 1
DC comparator level 16	$V_{C 1000}$	2.76	3.10	3.44	V	Pin 11 output	Fig. 1
DC comparator level 15	$\mathrm{V}_{\text {Cisde }}$	2.35	2.64	2.93	V	Pin 12 output	Fig. 1
DC comparator level 14	$\mathrm{V}_{\text {ciade }}$	2.07	2.33	2.59	v	Pin 13 output	Fig. 1
DC comparator level 13	$\mathrm{V}_{\text {cisec }}$	1.86	2.10	2.34	V	PIn 14 output	Fig. 1
DC comparator level 12	$\mathrm{V}_{\text {cizoc }}$	1.79	2.03	2.27	v	Pin 15 output	Fig. 1
DC comparator level 11	$V_{\text {C110c }}$	1.62	1.88	2.14	V	Pin 16 output	Fig. 1
DC comparator level 10	$\mathrm{V}_{\text {ciooc }}$	1.51	1.80	2.09	V	Pin 17 output	Fig. 1
DC comparator level 9	Vcapc	1.40	1.71	2.02	V	Pin 18 output	Fig. 1
DC comparator level B	$V_{\text {cad }}$	1.33	1.66	1.99	v	Pin 19 output	Fig. 1
DC comparator level 7	V V coc	1.23	1.58	1.93	V	Pin 20 output	Fig. 1
DC comparator level 6	$V_{\text {ceoc }}$	1.07	1.41	1.75	V	PIn 21 output	Fig. 1
DC comparator level 5	$V_{\text {c } 50}$	0.93	1.26	1.59	v	Pin 22 output	Fig. 1
DC comparator level 4	Vatac	0.77	1.07	1.37	V	Pin 23 output	Fig. 1
DC comparator level 3	$V_{\text {c30 }}$	0.42	0.60	0.78	V	Pin 24 output	Fig. 1
DC comparator level 2	$\mathrm{V}_{\text {c2de }}$	0.21	0.33	0.45	V	Pin 25 output	Fig. 1
DC comparator level 1	$V_{\text {CID }}$	0.11	0.18	0.25	V	Pin 26 output	Fig. 1

(2) DC comparator level $\mathrm{VC}(\mathrm{n}) \mathrm{DC}$ (Max.) $>\mathrm{VC}(n+1) \mathrm{DC}$ (Min.), but when the nth comparator is off, the ($n+1$)th comparator is never on.

- Measurement circuit

Fig. 1
Application example

Fig. 2
-Circuit operation
(1) Input block

The $A C$ input pins are pins are 1 and 3 , and the $D C$ in put pins are pins 5 and 6 (for both the BA6800AF and BA6805A). Pin 7 is used to switch between the AC and DC inputs. When the input to pin 7 is " H ", $A C$ input is selected (pins 1 and 3). Therefore, by using pin 7 to switch between the AC and DC modes, the IC can do two jobs. For example, pins 1 and 3 can be used for audio signal input, and pins 5 and 6 can be used as the input for the signal meter output from a tuner (DC). The $A C$ input impedance of pins 1 and 3 is a low 250Ω (typ.), so connect potentiometers (VR_{1} and VR_{2}) in series with the inputs to adjust the sensitivity and ch1 and ch2 balance.
(2) Peak hold circuit

The BA6800AF and BA6805A have peak hold circuits that temporarily holds peak signal levels in $A C$ input mode.
The peak hold function can be used with the upper 12 points (5 to 16). The peak hold time depends on the oscillator frequency. It is 2 sec. (typ.) for an oscillator frequency of 2 kHz .
DC mode does not have a peak hold function
(3) Grid output

The pin 9 and 10 grid outputs are open-collector NPN transistors. The logic is active low (the fluorescent tube lights when the output is "L"), so connect two PNP transistors Q_{1} and Q_{z} as shown in the application example circuit to drive the fluorescent tubes (see Fig. 3).

Fig. 3
(4) Segment output block

Pins 11 to 26 are the segment outputs. The output circuits are open-collector PNP transistors. When grid 1 is "L"., the ch 1 level is output (pin 1 or 5 input level), and when grid 2 is " L ", the ch2 level is output (pin 3 or 6 input level). Refer to Fig. 4.
(5) Grid and segment output timing chart. The grid and segment output timing for an oscillator frequency of 2 kHz is shown in Fig. 5.
(6) Attack and release times

The response characteristic for $A C$ input signals is set by resistor R_{1} and capacitor C_{3} for ch1 and resistor R_{2} and capacitor C_{4} for ch2 (pins 2 and 4). When $R_{1}=$ $47 \mathrm{k} \Omega$ and $\mathrm{C}_{3}=22 \mu \mathrm{~F}$, the attack time is about 4 ms , and the release time is about 1 sec . (same for ch2).

Attack time : Time for the voltage on pins 2 and 4 to rise from 1 V to 2.5 V when the input goes from no input to 2.6 Vrms , then back to no input.

Release time : Time for the voltage on pins 2 and 4 to fall from 2.5 V to 1 V when the input goes from 2.6 Vrms to no input.
(7) Oscillator frequency

The resistor R_{26} and capacitor C_{5} connected to pin 28 determine the oscillator frequency
The oscillator frequency (fosc) and grid output period (T) are related as follows :
$T(\mathrm{~ms})=16 /$ fosc (kHz)

-Timing chart

Fig. 5 (b)

- External components (refer to "Circuit operation")
C_{1} and C_{2} : input coupling capacitors.
VR_{1} and $V R_{2}$: $A C$ sensitivity adjustment and balance adjustment ($3 \mathrm{k} \Omega$ recommended).
C_{3}, R_{1}, C_{4} and R_{2} : set the response characteristics with respect to the $A C$ input signal. In the example given, the attack time is about 4 mS and the release time is about 1 sec.
R_{3} : Pullup resistor for the input switching terminal (pin 7).
R_{6} and R_{7} : resistor for the grid leak current prath (licesk). Set so that laleak $\times R_{6}\left(R_{7}\right)<0.6 \mathrm{~V}$.
R_{4} and R_{5} : base bias resistors for Q_{1} and Q_{2}.
Conditions for base bias current (le) flow are $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ and $V_{F}=0.6 \mathrm{~V}$:
$\frac{\mathrm{R}_{4}}{\mathrm{R}_{6}}<\frac{5-0.6}{0.6}=7.3$
the base current is given by the following formula.
$\mathrm{IG}(\mathrm{mA}) \fallingdotseq \frac{5-0.6}{\mathrm{R}_{4}(\mathrm{k} \Omega)}-\frac{0.6}{\mathrm{R}_{6}(\mathrm{k} \Omega)}$
$\mathrm{l}_{\mathrm{B}}>\frac{\text { Fluorescent tube grid current/hfe }}{\text { hes }}$
Set resistors A_{4} and R_{6} (R_{5} and R_{7}) so that
Q_{1} and Q_{2} : grid output inverting transistors. Use transistors for which $V_{c E o}>V_{c c}+V_{E E}$.
R8 to R_{25} : Resistors that reverse bias the segments and grid when the fluorescent tube is not lit.
The application example given is for general cases Select the resistors to suit the characteristics of the fluorescent tube used.
C_{5} and R_{26} : set the oscillator frequency.
Capacitor C_{5} should be a component with good temperature characteristics.
- Operation notes

1) Adjust the potentiometers VR_{1} and VR_{2} (connected to pins 1 and 3) to adjust the 0 dB input level and the dispersion of ch1 and ch2.
2) The temperature characteristic for the lighting limit for the 16th LED is shown in Fig. 6.
3) The external resistor R26 connected to the oscillaor (pin 28) should be in the range of $20 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$.
If it is outside this range, oscillation may stop due to the influence of temperature (see Fig. 7)

Electrical characteristics curves

Fig. 6 16th point lighting limit supply voltage vs. ambient temperature output current

OUTPUT CURRENT: I_{O} (mA)

Fig. 9 Grid low-level output vs.

Fig. 7 Value of external components for oscillator ($\mathrm{VCO}=5.0 \mathrm{~V}$)

Fig. 8 Segment high-leve output vs. output current

External dimensions (Unit: mm)

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlied by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, trans portation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

Notes when exporting

- It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
- Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.

