April 1998

DM74ALS573B

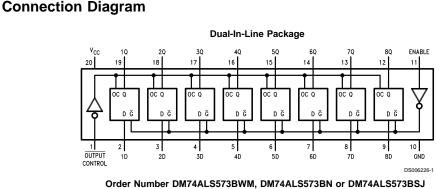
Extended Temperature Octal D-Type Transparent Latch with 3-STATE Outputs

FAIRCHILD

DM74ALS573B **Extended Temperature Octal D-Type Transparent Latch** with 3-STATE Outputs

General Description

These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.


The eight latches of the ALS573B are transparent D-type latches. While the enable (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was set up.

A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the latches. That is, the old data can be retained or new data can be entered even while the outputs are off.

Features

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- Functionally equivalent with LS373
- Improved AC performance over LS373 at approximately half the power

See Package Number M20B, M20D or N20A

Function Table

Output	Enable	D	Output
Control	G		Q
L	Н	Н	Н
L	н	L	L
L	L	Х	Q ₀
н	Х	Х	Z

L = Low State, H = High State, X = Don't Care

Z = High Impedance State Q₀ = Previous Condition of Q

- 3-STATE buffer-type outputs drive bus lines directly

© 1998 Fairchild Semiconductor Corporation DS006226

Absolute Maximum Ratings (Note 1)

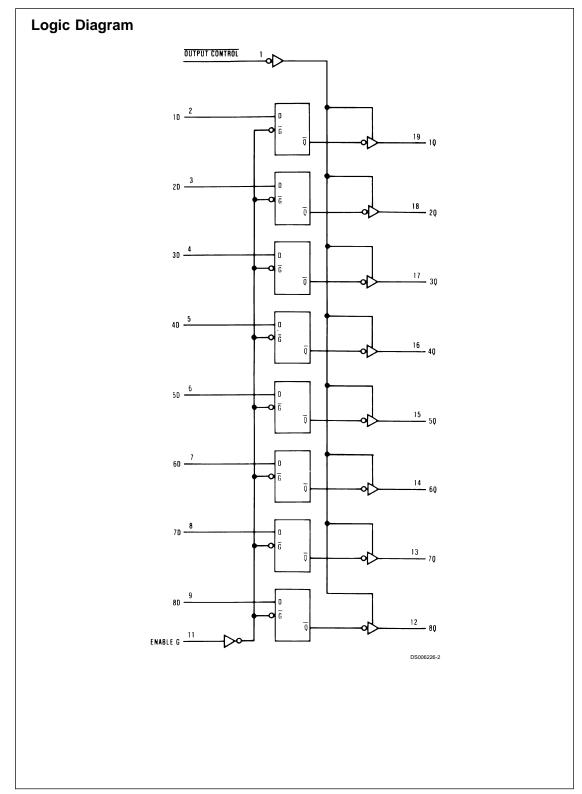
Supply Voltage	7V
Input Voltage	7V
Voltage Applied to Disabled Output	5.5V
Operating Free Air Temperature Range	

DM74ALS Storage Temperature Range	0°C to +70°C –65°C to +150°C
Typical θ _{JA}	
N Package	56.0°C/W
M Package	75.0°C/W

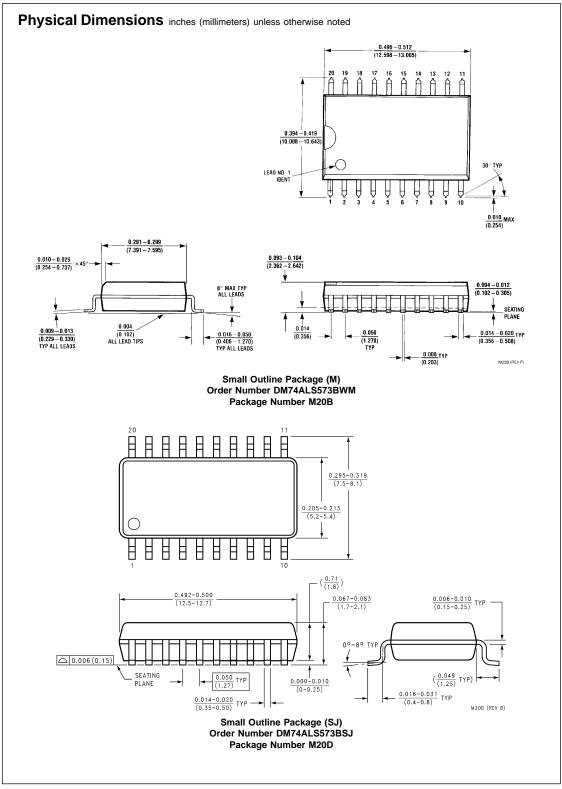
Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{cc}	Supply Voltage	4.5	5	5.5	V
VIH	High Level Input Voltage	2			V
VIL	Low Level Input Voltage			0.8	V
I _{OH}	High Level Output Current			-2.6	mA
I _{OL}	Low Level Output Current			24	mA
t _W	Width of Enable Pulse, High	10			ns
t _{SU}	Data Setup Time (Note 2)	10↓			ns
t _H	Data Hold Time (Note 2)	7↓			ns
T _A	Free Air Operating Temperature	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.


Note 2: The (\downarrow) arrow indicates the negative edge of the enable is used for reference.

Electrical Characteristics


over recommended operating free air temperature range. All typical values are measured at V_{CC} = 5V, T_A = 25°C.

Symbol	Parameter	Cond	ditions	Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	V _{CC} = 4.5V, I _I = -18 mA	ł			-1.2	V
V _{OH}	High Level Output	V _{CC} = 4.5V	I _{OH} = Max	2.4	3.2		V
	Voltage	$V_{IL} = V_{IL}Max$					
		V _{CC} = 4.5V to 5.5V	I _{OH} = -400 μA	V _{CC} – 2			V
V _{OL}	Low Level Output	V _{CC} = 4.5V	I _{OL} = 12 mA		0.25	0.4	V
	Voltage	$V_{IH} = 2V$	I _{OL} = 24 mA		0.35	0.5	V
lj –	Input Current @ Max	V _{CC} = 5.5V, V _{IH} = 7V				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V _{CC} = 5.5V, V _{IH} = 2.7V				20	μA
IIL	Low Level Input Current	V _{CC} = 5.5V, V _{IL} = 0.4V				-0.1	mA
lo	Output Drive Current	V _{CC} = 5.5V, V _O = 2.25V	/	-30		-112	mA
I _{OZH}	Off-State Output Current	V _{CC} = 5.5V, V _{IH} = 2V				20	μA
	High Level Voltage Applied	V _O = 2.7V					
I _{OZL}	Off-State Output Current	V _{CC} = 5.5V, V _{IH} = 2V				-20	μA
	Low Level Voltage Applied	$V_0 = 0.4V$					
I _{CC}	Supply Current	V _{CC} = 5.5V	Outputs High		10	17	mA
		Outputs Open	Outputs Low		15	24	mA
			Outputs Disabled		15.5	27	mA

Symbol	Parameter	Conditions	From	То	Min	Max	Units
PLH	Propagation Delay Time	V _{CC} = 4.5V to 5.5V	Data	Any Q	2	14	ns
	Low to High Level Output	$R_L = 500\Omega$					
РНL	Propagation Delay Time	C _L = 50 pF	Data	Any Q	2	14	ns
	High to Low Level Output						
PLH	Propagation Delay Time		Enable	Any Q	6	20	ns
	Low to High Level Output						
PHL	Propagation Delay Time		Enable	Any Q	6	19	ns
	High to Low Level Output						
PZH	Output Enable Time		Output	Any Q	3	18	ns
	to High Level Output		Control				
PZL	Output Enable Time		Output	Any Q	4	18	ns
	to Low Level Output		Control				
РНZ	Output Disable Time		Output	Any Q	1	10	ns
	from High Level Output		Control				
PLZ	Output Disable Time		Output	Any Q	1	15	ns
	from Low Level Output		Control				

www.fairchildsemi.com

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.