Monolithic Linear IC

Overview

The LA5314 is a valiable diveded voltage generator IC for multiple drive of LCD matrix.

Features

- Power supply for variable bias LCD matrix. (1/5 to 1/20 bias available by built-in resistances)
- Five operational amplifiers to deliver 5 voltage outputs
- Low current drain (1.6 mA typ)
- Miniflat package for miniturization

Package Dimensions

unit : mm

3222-HSOP28

Specifications

Maximum Ratings at $Ta = 25 \circ C$

Parameter	Symbol	Conditions	nditions Ratings	
Maximum supply voltage	V _{CC} max	V _{CC} – V _{EE}	38	V
Maximum output current	I _{OUT} max	V0 to V4	*±25	mA
Allowable power dissipation	Pd max		600	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-30 to +150	°C

Note: 1. Continuous operation (non breakdown) is guaranteed when operated at the maximum ratings shown above.

2. *The maximum output current is a value specified under the conditions otherwise specified separately.

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit	
Supply voltage	V _{CC}	V _{CC} – V _{EE}	10 to 35	V	
Output current	I _{OUT} 0, 1	V0, V1	-0.5 to +10	mA	
	I _{OUT} 2, 3	V2, V3	-10 to +10	mA	
	I _{OUT} 4	V4	-15 to +0.5	mA	

Note: 3. Set V_{CC} and V_{EE} so that $\left|V0{-}V1\right|$ and $\left|V4\right|$ become 1V or greater.

Parameter	Symbol	Conditions	min	typ	max	Unit
Current drain	I _{CC} , I _{EE}	V_{CC} , V_{EE} : $V_{CC} - V_{EE} = 20 V$, $R_X = 8R$		1.6	3	mA
Output voltage difference 1	Vd1	(V0 - V1) - (V1 - V2)	-30		+30	mV
Output voltage difference 2	Vd2	$(V3 - V4) - (V4 - V_{EE})$	-30		+30	mV
Output voltage ratio 1	Rb1	V0/(V0 – V1)	11.64	12.00	12.36	—
Output voltage ratio 2	Rb2	V0/(V0 – V2)	5.82	6.00	6.18	—
Output voltage ratio 3	Rb3	V0/V3	5.82	6.00	6.18	—
Output voltage ratio 4	Rb4	V0/V4	11.64	12.00	12.36	—
Internal resistnace ratio 1	8R	$R_X 1 - R_X 2^*$		8		_
Internal resistance ratio 2	12R	$R_{X}1 - R_{X}3^{*}$		12		_
Internal resistance ratio 3	14R	$R_{X}1 - R_{X}4^{*}$		14		—
Internal resistance ratio 4	15R	$R_X 1 - V_{IN} 3^*$		15		—
Resistance	R	R value when 0.6 V is applied across $R_{\chi}5-R_{\chi}6$: $R_{\chi}5-R_{\chi}6$		20		kΩ
Load regulation 1	ΔV0	V0: –0.2 mA < I _{OUT} 0 < +10.0 mA	-20		+20	mV
Load regulation 2	ΔV1	V1: –0.2 mA < I _{OUT} 1 < +10.0 mA	-20		+20	mV
Load regulation 3	$\Delta V2$	V2: –10.0 mA < I _{OUT} 2 < +10.0 mA	-20		+20	mV
Load regulation 4	ΔV3	V3: -10.0 mA < I _{OUT} 3 < +10.0 mA	-20		+20	mV
Load regulation 5	ΔV4	V4: -10.0 mA < I _{OUT} 4 < +0.2 mA	-20		+20	mV

Operating Characcteristics at Ta = 25°C, V_{CC} – V_{EE} = 20 V, V_{REF} = V_{CC}, R_X = 8R

Note* : Referenced to R between $R_{\rm X}4$ and $V_{\rm IN}3$

Pin Assignment

T00025

Block Diagram

Note: Use the IC so that $V_{RX}1 \geqq V_{RX}2 \geqq V_{RX}3 \geqq V_{RX}4$ is obeyed.

Maximum Output Current Load Test Conditions

Output load resistances R1 to R10 are set in order that current of 30 mA max. are supplied to both source and sink sides when an on-level input is applied to the inputs 1 or 2.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and
 - expenses associated with such use:
 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of August, 1996. Specifications and information herein are subject to change without notice.