LA5616

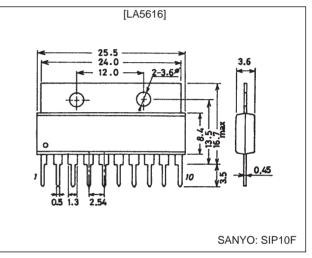
Microprocessor-Controlled Audio Power Supply

Overview

The LA5616 is appropriate for use in power supplies for microprocessor-controlled CD players, tuners, receivers, and similar audio equipment.

Functions

- Low-saturation 5-V, 400-mA power supply
- 7.0-V, 1.0-A power supply
- Output reset generation function
- The 5.0-V system can be controlled (on/off) from the provided active-high enable pin.


Features

- The reset output delay time can be set with an external capacitor.
- Sharp-cutoff current limiter circuit and thermal protection circuit
- Active pull-up element incorporated in reset output circuit for improved noise suppression.

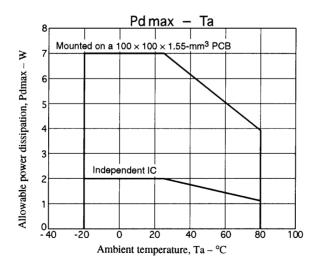
Package Dimensions

unit: mm

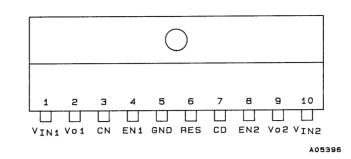
3018A-SIP10F

Specifications

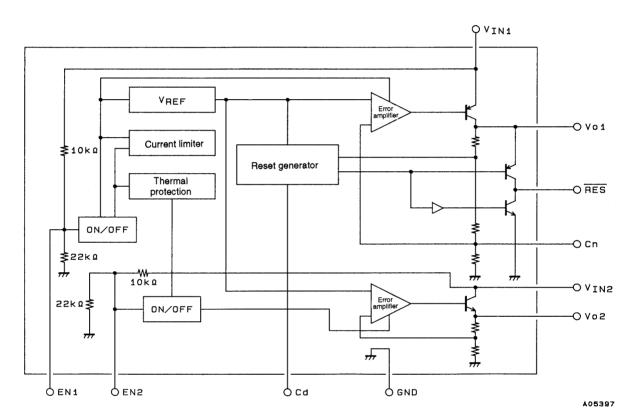
Absolute Maximum Ratings at $Ta = 25^{\circ}C$

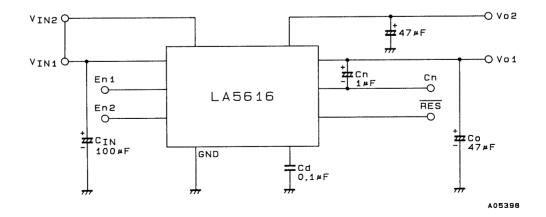

Parameter	Symbol	Conditions	Ratings	Unit
Input voltage	V _{IN} max		18	V
Enable pin voltage	V _{EN} max		V _{IN} max	V
Reset output pin voltage	V _{RES} max		18	V
Allowable power dissipation	Pd max		2	W
Operating temperature	Topr		-20 to +80	°C
Storage temperature	Tstg		-55 to +150	°C

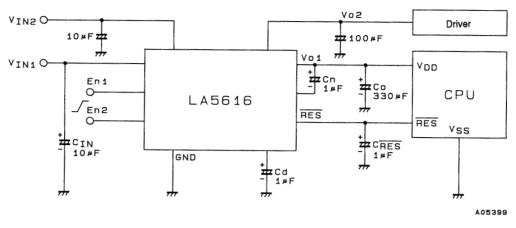
Operating Conditions at $Ta = 25^{\circ}C$


Parameter	Symbol	Conditions	Ratings	Unit
Input voltage	VIN		5.6 to 17	V
Output current	I _{OUT} 1		0 to 400	mA
	I _{OUT} 2		0 to 1.0	А
Reset output source current	I _{ORH}	High level	0 to 200	μA
Reset output sink current	I _{ORL}	Low level	0 to 2	mA

Electrical Characteristics at $Ta = 25^{\circ}C$

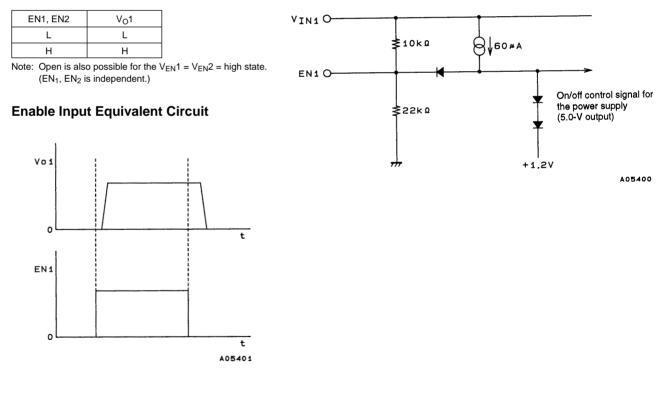

Parameter	Symbol	Conditions	Ratings			Unit
	Symbol		min	typ	max	Offic
[5.0-V Power Supply Block] V_{IN} 1 = V_{IN} 2, C	C _{OUT} 2 = 47 μF					
Output voltage	V _{OUT} 1	V _{IN} 1 = 12 V, I _{OUT} 1 = 400 mA	4.75	5.0	5.25	V
Dropout voltage	V _{DROP} 1	V _{IN} 1 = 4.9 V, I _{OUT} 1 = 400 mA		0.5	1.0	V
Line regulation	ΔV_{OLN} 1	$5.6 \leq V_{IN} 1 \leq 17$ V, $I_{OUT} 1$ = 400 mA		20	100	mV
Load regulation	ΔV_{OLD} 1	5 mA \leq I_O \leq 400 mA, V_{IN}1 = 12 V		50	150	mV
Peak output current	I _{OP} 1	V _{IN} 1 = 12 V	400	500		mA
Output shorted current	I _{OSC} 1	V _{IN} 1 = 12 V		100	400	mA
Output noise voltage	V _N 1	$10 \text{ Hz} \le f \le 100 \text{ kHz}$		70		μVrms
Output voltage temperature coefficient	ΔV _O /ΔTal	Tj = 25 to 125°C		1.6		mV/°C
Ripple rejection	Rref1	f = 120 Hz, 6 V \le V _{IN} 1 \le 17 V		60		dB
Output on control voltage	V _{ENH} 1	V _{IN} 1 = 12 V	2.6			V
Output off control voltage	V _{ENL} 1	V _{IN} 1 = 12 V			1.0	V
Low-level output voltage	V _{O OFF} 1	V _{IN} 1 = 12 V			0.3	V
[Reset Block] $V_{IN}1 = V_{IN}2 = 12 V$			· · ·			
High reset output voltage	V _{ORH}	I _{ORH} = 200 μA, Cd pin open	4.73	4.98	5.23	V
Low reset output voltage	V _{ORL}	I _{SRL} = 2 mA, with Cd shorted to GND		100	200	mV
Reset threshold voltage	V _{RT}		3.95	4.2	4.45	V
Reset hysteresis voltage	Vhys		40	100	200	mV
Reset output delay time	td	Cd = 0.1 µF	7.5	10	12.5	ms
[7.0-V Power Supply Block] $V_{IN}1 = V_{IN}2$, C	c _{OUT} 2 = 47 μF		· · ·			
Output voltage	V _{OUT} 2	V _{IN} 2 = 12 V, I _{OUT} 2 = 1 A	6.5	7.0	7.5	V
Dropout voltage	V _{DROP} 2	V _{IN} 2 = 6.5 V, I _{OUT} 2 = 1 A		1.0	2.0	V
Line regulation	$\Delta V_{OLN} 2$	$9.0 \leq V_{IN}2 \leq 17 \text{ V}, I_{OUT}2 = 1 \text{ A}$			200	mV
Load regulation	$\Delta V_{OLD} 2$	5 mA \leq I_O \leq 1.0 A, V_{IN}2 = 12 V			300	mV
Peak output current	I _{OP} 2	V _{IN} 2 = 12 V	1.0			A
Output shorted current	I _{OSC} 2	V _{IN} 2 = 12 V		500		mA
Ripple rejection	Rref2	f = 120 Hz, 9.0 V \leq V _{IN} 2 \leq 17 V		50		dB
Output on control voltage	V _{ENH} 2	V _{IN} 2 = 12 V	2.6			V
Output off control voltage	V _{ENL} 2	V _{IN} 2 = 12 V			1.0	V
Low-level output voltage	V _{O OFF} 2	V _{IN} 2 = 12 V			0.3	V


Pin Assignment

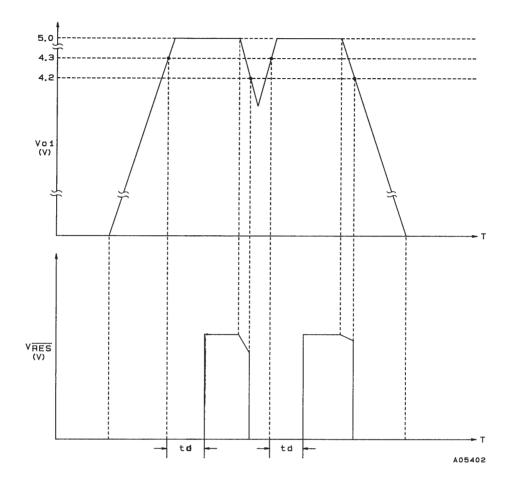

Equivalent Circuit Block Diagram

Test Circuit Diagram

Application Circuit Example



Note: 1. The capacitors Cn and $C_{\overline{RES}}$ are only needed when external noise is a problem.


If these capacitors are used, then capacitor Co must have a value at least 1/3 that of capacitor C_{IN}. A certain amount of noise may occur when V_{IN} goes off due to differences in discharge timings between the capacitors.

- 2. A capacitor with a low temperature dependence must be used for the delay capacitor Cd.
- 3. The minimum value for the output capacitor Co is 47 $\mu F.$
- 4. The input voltages must obey the relationship $V_{IN}1 \le V_{IN}2$, and must be brought up at the same time.

Function Table

Reset Operation

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 1997. Specifications and information herein are subject to change without notice.