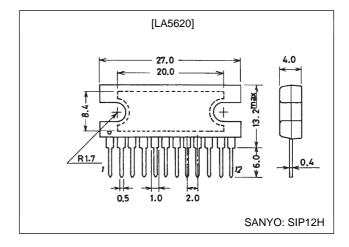


Regulator for Multiple Power Supply Systems

Overview

The LA5620 is a multi-system power supply regulator IC that includes four regulator circuits on chip: two 3.3-V regulator circuits and two 5-V regulator circuits. The LA5620 is optimal for use in audio and video systems that use a microcontroller, such as MD players and stereo components.


Functions and Features

- Two 3.3-V regulator circuits ($I_O = 40 \text{ mA}$, 150 mA)
- Two 5-V regulator circuits ($I_O = 1000 \text{ mA}, 100 \text{ mA}$)
- Power on/off detection circuit
- Reset circuit

Package Dimensions

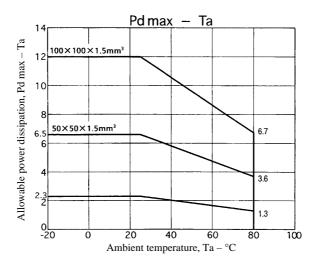
unit: mm

3049A-SIP12H

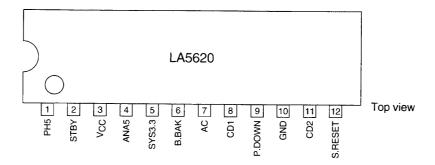
Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

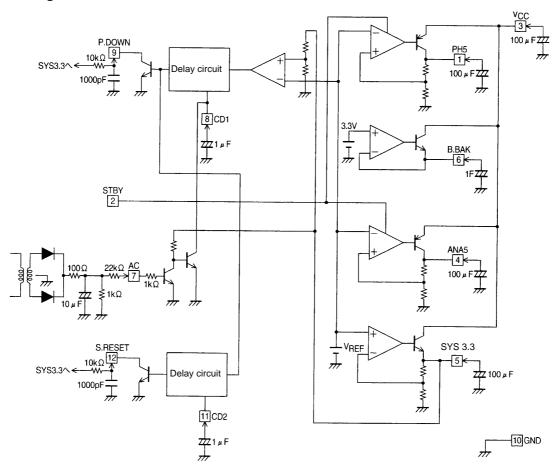
Parameter	Symbol	Conditions	Ratings	Unit
Input voltage	V _{CC} max		14	V
AC input voltage	AC max		2	V
Allowable power dissipation	Pd max	Independent IC	2.3	W
Operating temperature	Topr		-20 to +80	°C
Storage temperature	Tstg		-55 to +150	°C


Operating Conditions at $Ta = 25^{\circ}C$

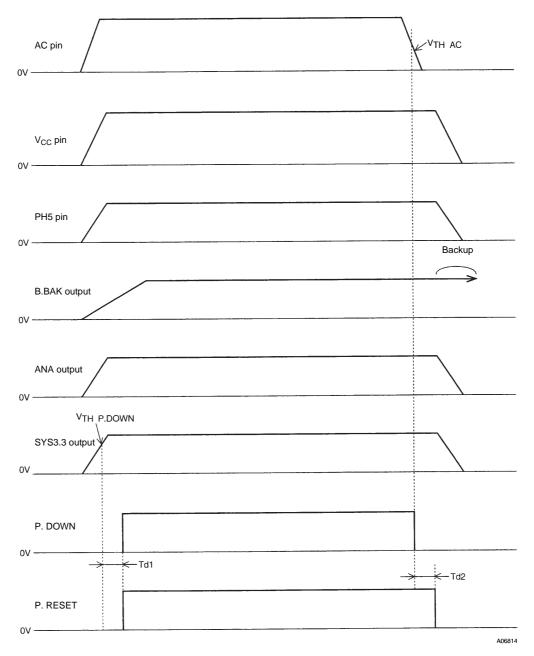
Parameter	Symbol	Conditions	Ratings	Unit
Input voltage	V _{CC}		6.25 to 12	V
PH5 output current	I _{PH5}		0 to 1000	mA
B.BAK output current	I _{B.BAK}		0 to 40	mA
ANA5 output current	I _{ANA5}		0 to 100	mA
SYS3.3 output current	I _{SYS3.3}		0 to 150	mA
S.RESET sink current	I _{SINK S}		0 to 1	mA
P.DOWN sink current	I _{SINK P}		0 to 1	mA
AC input current	I _{AC}		0 to 1	mA


LA5620

Electrical Characteristics at $Ta = 25^{\circ}C$


Parameter	Symbol	O and distinct	Ratings			Linit			
		Conditions	min	typ	max	Unit			
[PH5 Regulator Block] V _{CC} = 10 V, I _{PH5} = 1 A			'	,					
Output voltage	V _{O PH5}		4.75	5	5.25	V			
Dropout voltage	V _{DROP PH5}		-	0.5	1	V			
Line regulation	ΔV _{OLN PH5}	V _{CC} = 6.25 to 12 V	_	-	200	mV			
Load regulation	ΔV _{OLD PH5}	I _{PH5} = 0.5 to 1 A	_	-	200	mV			
Peak output current	I _{OP}		1.0	1.4	_	Α			
Output shorted current	I _{OSC PH5}		-	400	1000	mA			
Current drain	I _{Q PH5}		_	70	112	mA			
[SYS3.3 Regulator Block] $V_{CC} = 10 \text{ V}$, $I_{SYS3.3} = 150 \text{ mA}$									
Output voltage	V _{O SYS3.3}		3.13	3.3	3.47	V			
Dropout voltage	V _{DROP SYS3.3}		_	2	2.5	V			
Line regulation	ΔV _{OLN SYS3.3}	V _{CC} = 6.25 to 12 V	_	-	200	mV			
Load regulation	ΔV _{OLD SYS3.3}	I _{SYS3.3} = 5 to 150 mA	_	-	200	mV			
Peak output current	I _{OP SYS3.3}		150	210	_	mA			
Output shorted current	I _{OSC SYS3.3}		-	200	450	mA			
Current drain	I _{Q SYS3.3}		_	17.5	28	mA			
[ANA5 Regulator Block] V _{CC} = 10 V, I _{ANA5} = 100 mA									
Output voltage	V _{O ANA5}		4.75	5	5.25	V			
Dropout voltage	V _{DROP ANA5}		-	0.5	1	V			
Line regulation	ΔV _{OLN ANA5}	V _{CC} = 6.25 to 12 V	_	-	200	mV			
Load regulation	ΔV _{OLD ANA5}	I _{ANA5} = 5 to 100 mA	_	-	200	mV			
Peak output current	I _{OP ANA5}		100	140	_	mA			
Output shorted current	I _{OSC ANA5}		_	40	100	mA			
Current drain	I _{Q ANA5}		-	17.5	28	mA			
[B.BAK Regulator Block] V _{CC} = 10 V, I _{BAK} = 4	0 mA								
Output voltage	V _{O BAK}		3.13	3.3	3.47	V			
Dropout voltage	V _{DROP BAK}		_	2	2.5	V			
Line regulation	ΔV _{OLN BAK}	V _{CC} = 6.25 to 12 V	-	-	200	mV			
Load regulation	ΔV _{OLD BAK}	I _{BAK} = 5 to 40 mA	_	-	200	mV			
Peak output current	I _{OP BAK}		40	56	_	mA			
Output shorted current	I _{OSC BAK}		_	40	120	mA			
Current drain	I _{Q BAK}		_	15	24	mA			
BAK pin input current	I _{IN BAK}	V _{CC} = 0 V, V _{BAK} = 3.3 V	-	-	100	nA			
[P.DOWN Detection Circuit] V _{CC} = 10 V									
P.DOWN threshold voltage	V _{TH P.DOWN}		3.0	3.16	3.32	V			
P.DOWN residual voltage	Vsat _{P.DOWN}	cd1 pin = shorted, P.DOWN pin = 1 mA	-	-	200	mV			
P.DOWN delay time	Td1	cd1 = 1 μF	75	100	125	ms			
[S.RESET Detection Circuit] V _{CC} = 10 V									
S.RESET residual voltage	V _{TH} S.RESET	cd1 pin = shorted, S.RESET pin = 1 mA	-	-	200	mV			
S.RESET delay time	Td2	cd2 = 1 µF	75	100	125	ms			
[AC Detection Circuit] V _{CC} = 10 V									
AC threshold voltage	V _{TH AC}		0.5	0.7	0.9	٧			
[STBY Detection Circuit] V _{CC} = 10 V									
STBY threshold voltage	V _{TH STBY}		1.3	1.8	2.3	٧			

Pin Assignment



Block Diagram

Note: Use capacitors with minimal temperature variations for all capacitors in application circuits.

Timing Chart

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 1997. Specifications and information herein are subject to change without notice.