LA6542M

4-Channel Bridge (BTL) Driver for CD-ROM

Overview

The LA 6542 M is a 4 -channel bridge (BTL) driver developed for CD-ROM applications.

Functions

- 4-channel power amplifier with bridge circuit (BTL)
- $\mathrm{I}_{\mathrm{O}} \max : 1 \mathrm{~A}$
- Integrated muting circuit
(MUTE: Output OFF at Low, output ON at High. MUTE1 is for channels 1 and 2, and MUTE2 for channels 3 and 4.)
- Slew rate $0.5 \mathrm{~V} / \mu \mathrm{s}$
- Integrated thermal shutdown circuit

Package Dimensions

unit: mm
3204-MFP36SLF

Specifications

Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	$\mathrm{V}_{\mathrm{CC}} \mathrm{max}$		14	V
Maximum supply voltage 2	$V_{S} \max$	$\mathrm{V}_{\mathrm{S}} 1,2$	14	V
Maximum input voltage	$\mathrm{V}_{\text {IN }}$ max	Input pins $\mathrm{V}_{\text {IN }} 1$ to 4	13	V
Mute pin voltage	$\mathrm{V}_{\text {MUTE }} \mathrm{max}$		13	V
Allowable power dissipation	Pd max	IC only	0.9	W
Operating temperature	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended operation voltage 1	V_{CC}		4 to 13	V
Recommended operation voltage 2-1	V_{S}		4 to 13	V
Recommended operation voltage 2-2	$\mathrm{V}_{\mathrm{S}}{ }^{2}$		4 to 13	V

${ }^{*} \mathrm{~V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{S}} 1,2$

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
■SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
$\mathrm{V}_{\text {CC }}$ no-load current drain	ICC^{1}	All outputs ON (MUTE1, MUTE2: High)	5	10	20	mA
	$\mathrm{I}_{\mathrm{CC}}{ }^{2}$	All outputs OFF (MUTE1, MUTE2: Low)		5	10	mA
$\mathrm{V}_{S} 1$ no-load current drain	I^{1-1}	CH1, 2 ON (MUTE1, MUTE2: High)		10	30	mA
	$\mathrm{I}_{\text {S }} 1-2$	CH1, 2 OFF (MUTE1, MUTE2: Low)			4	mA
$\mathrm{V}_{\mathrm{S}} 2$ no-load current drain	$\mathrm{I}^{2} 2-1$	CH3, 4 ON (MUTE1, MUTE2: High)		10	30	mA
	Is 2 -2	CH3, 4 OFF (MUTE1, MUTE2: Low)			4	mA
Output offset voltage	$\mathrm{V}_{\text {OF }} 1$ to 4	Potential difference between plus and minus outputs for CH 1 to CH 4	-50		50	mV
Input voltage range	$\mathrm{V}_{\text {IN }}$	Input voltage range for $\mathrm{V}_{\text {IN }} 1$ to $\mathrm{V}_{\text {IN }} 4$	0.5		5	V
Output voltage (source)	Vsource	Plus and minus outputs at high level	4.4	4.7		V
		$\mathrm{I}_{\mathrm{O}}=700 \mathrm{~mA}$				
(sink)	Vsink	Plus and minus outputs at low level		0.3	0.6	V
		$\mathrm{I}_{0}=700 \mathrm{~mA}$				
Closed circuit voltage gain	VG	Voltage gain between BTL amplifiers		6		dB
Slew rate	SR	(Note 1)		0.5		$\mathrm{V} / \mu \mathrm{s}$
Mute ON voltage	$\mathrm{V}_{\text {MUTE }}$	MUTE1, MUTE2 voltage when output is ON (Note 2)		1.5	2	V
Mute ON current	$I_{\text {mute }}$	MUTE1, MUTE2 current when output is ON (Note 2)		6	10	$\mu \mathrm{A}$

Note 1: Guaranteed design value
Note 2: MUTE works on all channels. At High, amplifier output is ON and at Low amplifier output is OFF (output impedance becomes HI).

Pin Assignment

Top view

Pin Function

Pin number	Pin name	Equivalent circuit	Pin function
$\begin{gathered} \hline 1,2 \\ 17,18 \\ 19,20 \\ 35,36 \end{gathered}$	RF		Substrate (minimum potential)
$\begin{gathered} \hline 7,9 \\ 11,13 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}} 1, \mathrm{~V}_{\mathrm{IN}}{ }^{2} \\ & \mathrm{~V}_{\mathrm{IN}} 3, \mathrm{~V}_{\mathrm{IN}} 4 \end{aligned}$		Input pins for CH 1 and CH 2 Input pins for CH 3 and CH 4
$\begin{gathered} \hline 8,10 \\ 12,14 \end{gathered}$	$\begin{aligned} & \text { VG1, VG2 } \\ & \text { VG3, VG4 } \end{aligned}$		Input pins for CH 1 and CH 2 (for gain adjustment) Input pins for CH3 and CH4 (for gain adjustment)
16	V_{CC}	28	Power supply
22	$\mathrm{V}_{\text {REF }} \mathrm{OUT}$		Level shift circuit reference voltage ($\mathrm{V}_{\text {REF }} 1$ buffer amplifier output*)
3	$\mathrm{V}_{\text {OUT }}$		OP amp output
4	$\mathrm{V}_{\text {IN }}{ }^{-}$		OP amp inverted input
5	$\mathrm{V}_{1 \mathrm{~N}^{+}}$		OP amp non-inverted input
$\begin{gathered} 6 \\ 15 \end{gathered}$	MUTE1 MUTE2		CH1, CH2 output ON/OFF CH3, CH4 output ON/OFF
21	$\mathrm{V}_{\text {REF }} \mathrm{IN}$		Level shift circuit reference voltage input ($\mathrm{V}_{\text {REF }}$ buffer amplifier input ${ }^{*}$)
23 24 26 27 28 29 31 32	$\begin{aligned} & \hline \mathrm{V}_{0} 8 \\ & \mathrm{~V}_{0} 7 \\ & \mathrm{~V}_{0} 6 \\ & \mathrm{~V}_{0} 5 \\ & \mathrm{v}_{0} 4 \\ & \mathrm{~V}_{0} 3 \\ & \mathrm{~V}_{0} 2 \\ & \mathrm{~V}_{0} 1 \end{aligned}$		CH 4 inverted output (AMP8 output) CH4 non-inverted output (AMP7 output) CH3 inverted output (AMP6 output) CH3 non-inverted output (AMP5 output) CH2 inverted output (AMP4 output) CH2 non-inverted output (AMP3 output) CH1 inverted output (AMP2 output) CH1 non-inverted output (AMP1 output)
25	$\mathrm{V}_{\mathrm{S}}{ }^{2}$		CH3 (AMP5, AMP6), CH4 (AMP7, AMP8) output stage power supply
30	$\mathrm{V}_{\mathrm{S}} 1$		CH1 (AMP1, AMP2), CH2 (AMP3, AMP4) output stage power supply
33	$\mathrm{V}_{\text {SS }}$-OUT		Output stage reference voltage ($\mathrm{V}_{\mathrm{SS}} 1 / 2$: typ) ($\mathrm{V}_{\mathrm{REF}}$ 2 buffer amplifier output ${ }^{*}$)
34	$\mathrm{V}_{\text {SS }}$		Connect to VS1, VS2 (resistance split) to generate $\mathrm{V}_{\mathrm{SS}} \mathrm{OUT}$

*See block diagram on next page.

Block Diagram

A11139
System Diagram (relationship between power supply and MUTE)

Sample Application Circuit

A11141

Gain Setting (input pins and adjustment pins)

A simplified diagram of V_{IN} and $V G$ is shown below.

1) Consider an $11 \mathrm{k} \Omega$ (typ.) resistor inserted between $V_{I N}$ and $V G$.
2) When not the pin $V G$ but the pin $V_{I N}$ is used alone, the $B T L$ gain (between $V_{O^{+}}$and $V_{O^{-}}$) is set to 6 dB (0 dB for $A M P$ only). This also applies for the case when V_{IN} is not used and an $11 \mathrm{k} \Omega$ external resistor is connected to VG for input.
3) Gain is set by the input impedance as seen from point A.

When VG only is used and the external resistor is R, the BTL gain (between $V_{O^{+}}$and $V_{O^{-}}$) is $20 \log (11 \mathrm{k} \Omega / \mathrm{R})+6 \mathrm{~dB}$.
When an $11 \mathrm{k} \Omega$ resistor is inserted between $\mathrm{V}_{I N}$ and $V G$, and input is via V_{IN}, the combined resistance $R z$ as seen from point A is $R z=5.5 \mathrm{k} \Omega$. Gain is
$20 \log (11 \mathrm{k} \Omega / 5.5 \mathrm{k} \Omega)+6 \mathrm{~dB}=12 \mathrm{~dB}$.

Offset Voltage

This IC incorporates a level shifter circuit. The input references the $\mathrm{V}_{\mathrm{REF}}$ to be applied, and references the voltage $\left(\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{BE}}\right.$ (0.7))/2V to be output.
\square Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 1998. Specifications and information herein are subject to change without notice.

