

Overview

The LA 6545 M is a 4 -channel bridge (BTL) driver developed for use in CD-ROM systems.

Functions

- Bridge connected (BTL) four-channel power amplifier
- V_{CE} (residual voltage) minimized (channels 1 and 2) by using two power supplies.
- I_{O} max: 1.0 A
- Muting circuit provided (output on/off control)

(MUTE pin: low for output off, high for output on MUTE1: controls channels 1, 2, and 3, MUTE2: controls channel 4.)
- Thermal protection (shutdown) circuit
- Separated output stage power supply (VS1: channels 1 and 2, VS2: channels 3 and 4)

Package Dimensions

unit: mm

3129-MFP36SLF

Specifications

Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	$\mathrm{V}_{\text {CC }}$ max	$\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{S}} 1,2$	14	V
Maximum supply voltage 2	V_{S} max	$\mathrm{V}_{\mathrm{S}} 1,2, \mathrm{~V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{S}} 1,2$	14	V
Input voltage	$\mathrm{V}_{\text {IN }}$ max	Each of the input pins $\mathrm{V}_{\text {IN }} 1$ to $\mathrm{V}_{\text {IN }} 4$	13	V
MUTE pin voltage	$\mathrm{V}_{\text {MUTE }}$ max		13	V
Allowable power dissipation	Pd max	Independent IC	0.9	W
		Mounted on the specified PCB ($76.1 \times 114.3 \times 1.6 \mathrm{~mm}^{3}$, glass epoxy)	2.1	W
Operating temperature	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

■ Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
\square SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Recommended Operating Conditions at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Operating supply voltage	V_{CC}	$\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{S}} 1,2$	4 to 13	V
	$\mathrm{~V}_{S} 1,2$	$\mathrm{V}_{\mathrm{S}} 1$ and $\mathrm{V}_{\mathrm{S}} 2$ are the output stage power supply. $\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{S} 1$ and $\mathrm{V}_{\mathrm{S}} 2$	4 to 13	V

Electrical Characteristics at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{V}_{\mathbf{S}} \mathbf{2}=\mathbf{1 2} \mathrm{V}, \mathrm{V}_{\mathrm{S}} \mathbf{1}=\mathbf{5} \mathrm{V}, \mathrm{V}_{\text {REF }}=\mathbf{1 . 6 5} \mathrm{V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
V_{CC} no load current drain 1	Icc-ON	Output on (MUTE1 and MUTE2: high), V_{CC}		10	25	mA
$\mathrm{V}_{\text {CC }}$ no load current drain 2	ICc-OFF	Output off (MUTE1 and MUTE2: low), V_{CC}			4	mA
VS1 no load current drain 1	Is $1-\mathrm{ON}$	Output on (MUTE1 and MUTE2: high), $\mathrm{V}_{\mathrm{S}} 1$		20	30	mA
VS1 no load current drain 2	Is2-OFF	Output off (MUTE1 and MUTE2: low), $\mathrm{V}_{\mathrm{S}} 1$			4	mA
VS2 no load current drain 1	Is2-ON	Output on (MUTE1 and MUTE2: high), $\mathrm{V}_{\mathrm{S}} 2$		20	30	mA
VS2 no load current drain 2	Is2-OFF	Output off (MUTE1 and MUTE2: low), VS2			4	mA
Output offset voltage	$V_{\text {OF1 }}$ to 4	Potential difference between the + and - outputs for each channel	-50		+50	mV
Input voltage range 1	$\mathrm{V}_{\text {IN }} 1$	Input voltage range for each channel	0		$\mathrm{V}_{\mathrm{S}} 1$	V
Output voltage 1	VO1	$\mathrm{I}_{\mathrm{O}}=700 \mathrm{~mA}$, the difference between the outputs for channels 1 and 2	4	4.5		V
Output voltage 2	VO2	$\mathrm{I}_{\mathrm{O}}=700 \mathrm{~mA}$, the difference between the outputs for channels 3 and 4	10.5	11		V
Closed circuit voltage gain	VG1	The BTL amplifier voltage gain for channels 1 and 2	5	7	9	dB
	VG2	The BTL amplifier voltage gain for channels 3 and 4	12	14	16	dB
Slew rate	SR	This value is doubled when measured across the outputs. *1		0.5		V/us
Muting on voltage	$\mathrm{V}_{\text {mute }}$	MUTE1 and MUTE2. The voltage at which the output turns on. *2		1.5	2	V

Notes 1. Design guarantee value.
2. The MUTE1, and MUTE2 pins turn the output on when high and off when low. When the output is off, the outputs will be in the high-impedance state.
The figure below shows the relationship between the channels and the MUTE pins and between the channels and the power supplies.

System Figure

Block Diagram and Pin Assignment

LA6545M

Pin Functions

Pin No.	Pin	Function
1	RF	Substrate (lowest potential)
2	RF	Substrate (lowest potential)
3	(NC)	Unused.
4	$\mathrm{V}_{\mathrm{SS}} 2$	Connect to $\mathrm{V}_{\mathrm{S}} 2$.
5	$\mathrm{V}_{\text {SS }} 2$-OUT	Output stage reference voltage output ((V) $\left.\mathrm{V}^{2} 2-\mathrm{VBE}\right) / 2$, typical)
6	MUTE1	Channels 1, 2, and 3 output on/off control
7	$\mathrm{V}_{\text {IN }} 1$	Channel 1 input
8	VG1	Channel 1 input (gain adjustment)
9	$\mathrm{V}_{\text {IN }} 2$	Channel 2 input
10	VG2	Channel 2 input (gain adjustment)
11	$\mathrm{V}_{\text {IN }} 3$	Channel 3 input
12	VG3	Channel 3 input (gain adjustment)
13	$\mathrm{V}_{\text {IN }} 4$	Channel 4 input
14	VG4	Channel 4 input (adjustment)
15	MUTE2	Channel 4 on/off control
16	V_{CC}	Power supply
17	RF	Substrate (lowest potential)
18	RF	Substrate (lowest potential)
19	RF	Substrate (lowest potential)
20	RF	Substrate (lowest potential)
21	$\mathrm{V}_{\text {REF }} \mathrm{IN}$	Reference voltage input ($\mathrm{V}_{\text {REF }} 1$ buffer amplifier input)
22	$\mathrm{V}_{\text {REF }}$ OUT	Reference voltage output (V $\mathrm{V}_{\text {REF }} 1$ buffer amplifier output)
23	$\mathrm{V}_{0} 4^{-}$	Channel 4 inverted output
24	$\mathrm{V}_{0} 4^{+}$	Channel 4 noninverted output
25	$\mathrm{V}_{\mathrm{S}} 2$	Channes 3 and 4 output stage power supply
26	$\mathrm{V}_{0} 3^{-}$	Channel 3 inverted output
27	$\mathrm{V}_{0}{ }^{+}$	Channel 3 noninverted output
28	$\mathrm{V}_{0}{ }^{-}$	Channel 2 inverted output
29	$\mathrm{V}_{0}{ }^{+}$	Channel 2 noninverted output
30	$\mathrm{V}_{\mathrm{S}} 1$	Channels 1 and 2 output stage power supply
31	$\mathrm{V}_{0}{ }^{-}$	Channel 1 inverted output
32	$\mathrm{V}_{0}{ }^{+}$	Channel 1 noninverted output
33	$\mathrm{V}_{\text {SS }} 1$-OUT	Output stage reference voltage (Outputs $\mathrm{V}_{\text {SS }} / 2$: typical) ($\mathrm{V}_{\text {REF }} 2$ buffer amplifier output)
34	$\mathrm{V}_{\mathrm{SS}} 1$	Connect to $\mathrm{V}_{\mathrm{S}} 1$. ($\mathrm{V}_{\text {SS }} 1$ - OUT is generated by a resistor divider.)
35	RF	Substrate (lowest potential)
36	RF	Substrate (lowest potential)

Sample Application Circuit

Pin Description

Pin No.	Pin	Symbol	Function	Equivalent circuit
$\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{*}} \\ & \mathrm{VG}^{*} \\ & \text { (Input) } \end{aligned}$	$V_{\mathbb{I N}^{1}}$ VG1 $V_{I_{N}} 2$ VG2 $V_{\text {IN }} 3$ VG3 $V_{\text {IN }} 4$ VG4	Inputs for each channel	
32 31 29 28 27 26 24 23	V_{0} * (Output)	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} 1^{+} \\ & \mathrm{V}_{\mathrm{O} 1^{-}} \\ & \mathrm{V}_{\mathrm{O} 2^{+}} \\ & \mathrm{V}_{\mathrm{O} 2^{-}} \\ & \mathrm{V}_{\mathrm{O}^{+}} \\ & \mathrm{V}_{\mathrm{O}} 3^{-} \\ & \mathrm{V}_{\mathrm{O}} 4^{+} \\ & \mathrm{V}_{0} 4^{-} \end{aligned}$	Outputs for each channel	
$\begin{gathered} 6 \\ 15 \end{gathered}$	MUTE	MUTE1 MUTE2	Output on/off control	

Gain Setting (Functions of the Input and Gain Adjustment Pins)
The figures present overviews of the V_{IN} and VG pin circuits. (These are the same as the block diagrams.)

1. Consider resistors ($11 \mathrm{k} \Omega$, typical) to be inserted between the V_{IN} and $V G$ pins. This should be seen as being the same as the operational amplifier noninverting input $\left(\mathrm{V}_{\mathrm{IN}^{+}}\right)$.
2. If the VG pins are not used, and only the $\mathrm{V}_{\text {IN }}$ pins are used, the BTL gain (across the $\mathrm{V}_{\mathrm{O}^{+}}$and $\mathrm{V}_{\mathrm{O}^{-}}$outputs) will be 7 dB for channels 1 and 2 (amplifier units: $1 \mathrm{~dB}+\mathrm{BTL}: 6 \mathrm{~dB}$) and 14 dB for channels 3 and 4 (amplifier units: $8 \mathrm{~dB}+$ BTL: 6 dB).
If the $V_{\text {IN }}$ pins are not used and $11 \mathrm{k} \Omega$ external resistors are attached to the VG pins, input to the opposite ends of those resistors will result in equivalent circuit operation. However, the $\mathrm{V}_{\text {IN }}$ pins should be used and the gain set to minimize the I/O gain temperature characteristics.

A12694

Offset Voltage

This IC includes built-in level shifting circuits. For input to which $\mathrm{V}_{\text {REF }}$ is applied as a reference, the output is referenced to the voltage $\mathrm{V}_{\mathrm{SS}} 1 / 2(\mathrm{~V})$ for channels 1 and 2 , and the output is referenced to the voltage $\left(\mathrm{V}_{\mathrm{SS}} 2-\mathrm{V}_{\mathrm{BE}}(0.7)\right) / 2(\mathrm{~V})$ for channels 3 and 4 .

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
■ SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
■ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 2000. Specifications and information herein are subject to change without notice.

