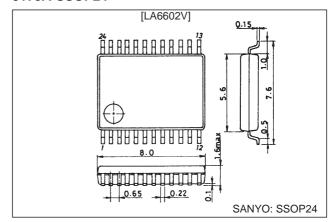


I-V Amplifier for MiniDisc Drives


Features

- The LA6602V is optimal as an interface IC between the PD and servo ICs used in MD PU modules.
- Eight buffer amplifier channels
- On-chip low-noise high-bandwidth amplifier RF block

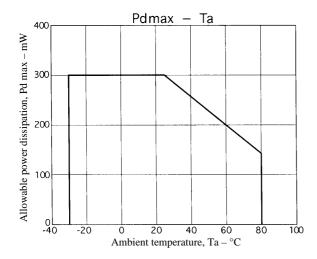
Package Dimension

unit: mm

3175A-SSOP24

Specifications

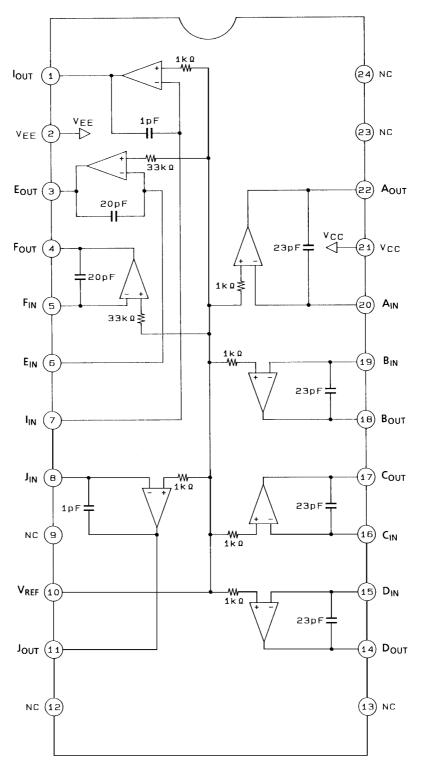
Maximum Ratings at $Ta = 25^{\circ}C$


Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		13.0	V
Allowable power dissipation	Pd max	Independent IC	300	mW
Operating temperature	Topr		-30 to +80	°C
Storage temperature	Tstg		-40 to +125	°C

Operating Conditions at $Ta = 25^{\circ}C$

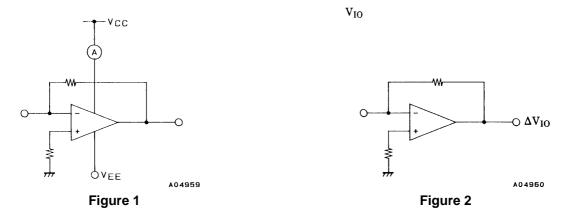
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		3.6 to 12.0	V

Operating Characteristics at $Ta = 25^{\circ}C$, $V_{CC}/V_{EE} = \pm 2.5 \text{ V}$


Parameter	Cumbal	Conditions		Ratings		
	Symbol		min	typ	max	Unit
Quiescent current	I _{cco}	See Figure 1.	5	10	20	mA
[Amplifiers A through D]						
Output offset voltage	V _{IO}	See Figure 2.		2	7	mV
Maximum output voltage	V _O max	$R_L = 4.7 \text{ k}\Omega$, $V_{\text{IN}} = -1 \text{ V}$ See Figure 3.	2.0			V
Minimum output voltage	V _O min	$R_L = 4.7 \text{ k}\Omega$, $V_{IN} = +1 \text{ V}$ See Figure 4.			-2.0	V
Gain-bandwidth product	f _T	20 [dB] amp GV = 0 [dB] See Figure 4.	0.5	0.7		MHz
[Amplifiers E and F]						
Output offset voltage	V _{IO}	See Figure 2.		2	7	mV
Maximum output voltage	V _O max	$R_L = 4.7 \text{ k}\Omega$, $V_{\text{IN}} = -1 \text{ V}$ See Figure 3.	2.0			V
Minimum output voltage	V _O min	$R_L = 4.7 \text{ k}\Omega$, $V_{IN} = +1 \text{ V}$ See Figure 4.			-2.0	V
Gain-bandwidth product	f _T	20 [dB] amp GV = 0 [dB] See Figure 4.	0.5	0.7		MHz
[Amplifiers I and J]						
Output offset voltage	V _{IO}	See Figure 2.		20	50	mV
Output offset voltage difference	V _{IO} I-J			3	7	mV
Maximum output voltage	V _O max	$R_L = 2 \text{ k}\Omega$, $V_{\text{IN}} = -1 \text{ V}$ See Figure 3.	1.5			V
Minimum output voltage	V _O min	$R_L = 2 \text{ k}\Omega$, $V_{\text{IN}} = +1 \text{ V}$ See Figure 4.			-1.5	V
Gain-bandwidth product	f _T	20 [dB] amp GV = 0 [dB] See Figure 4.	6	8		MHz

Pin Functions

Pin No.	Pin	Function
1	I _{OUT}	IV amplifier I output
2	V _{EE}	IC substrate (lowest) voltage
3	E _{OUT}	IV amplifier E output
4	Fout	IV amplifier F output
5	F _{IN}	IV amplifier F input
6	E _{IN}	IV amplifier E input
7	I _{IN}	IV amplifier I input
8	J _{IN}	IV amplifier J input
9	NC	Unused. Must be left open.
10	V _{REF}	External reference voltage
11	J _{OUT}	IV amplifier J output
12	NC	Unused. Must be left open.
13	NC	Unused. Must be left open.
14	D _{OUT}	IV amplifier D output
15	D _{IN}	IV amplifier D input
16	C _{IN}	IV amplifier C input
17	C _{OUT}	IV amplifier C output
18	B _{OUT}	IV amplifier B output
19	B _{IN}	IV amplifier B input
20	A _{IN}	IV amplifier A input
21	V _{CC}	Power-supply voltage
22	A _{OUT}	IV amplifier A output
23	NC	Unused. Must be left open.
24	NC	Unused. Must be left open.


Block Diagram

A04958

Stipulated Test Circuits

 I_{CCO}

 V_{O} max, V_{O} min

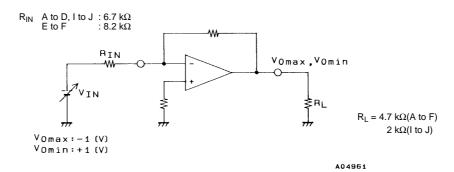


Figure 3

 $f_{T} \\$

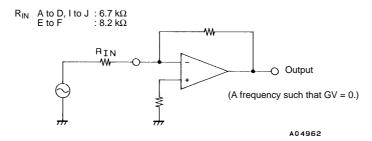
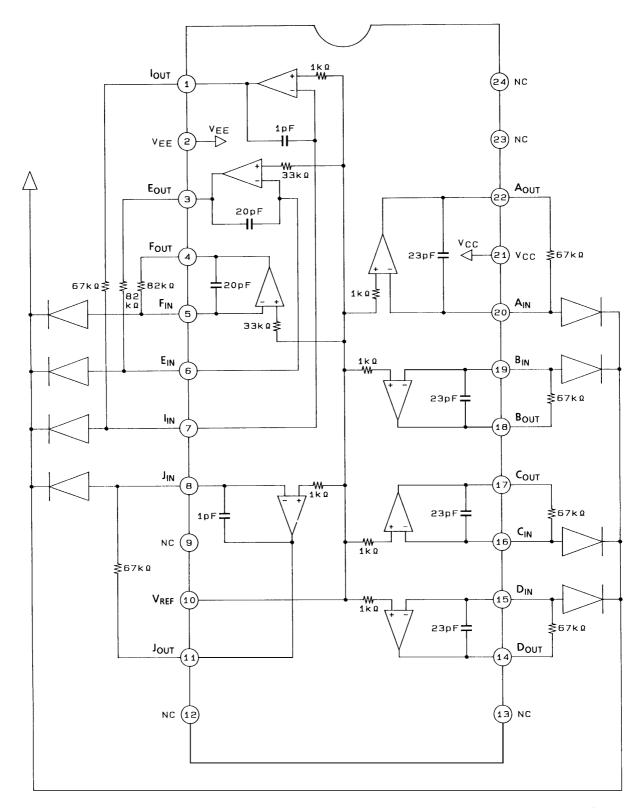



Figure 4

Sample Application Circuit

A04963

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1997. Specifications and information herein are subject to change without notice.