

PACKAGE DIMENSIONS
Unit: mm
3102-OIP48D (LA9200NM)

3052A-QIP48A (LA9201M)

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Pin	Description
1	FO	Photodiode F current-to-voltage converter output
2	TEAO	Tracking error amplifier output
3	TESI	Tracking error slice comparator input
4	VR3	Relerence voliage
5	TPA+	Tracking error preamplifier non-inverting input
6	TPA-	Tracking error preamplifier inverting input
7	TPRO	Tracking error preamplifier output
8	TOFS	Tracking ofF switch
10	THDS	Tracking hold switch
11	JPO	Jump pulse amplifier output
12	JP-	Jump pulse amplifier inverting input
13	JP	Jump pulse amplifier non-inverting input
14	TGL	Tracking hold control
15	TOFF	Tracking servocontroller gain control

LA9200NM,9201M

Number	Pin	Description
16	TES	Tracking error slice comparator output
17	HFL	High-frequency level comparator
18	$\overline{F Z D}$	Focus zero-crossing detector output
19	VEE	Supply voltage
20	FOCS	Focus switch control
21	VCC	Supply voltage
22	SLCO	Slice level control output
23	$\overline{\text { EFMO }}$	Eight-to-fourteen modulation control non-inverting input
24	EFMO	Eight-to-fourteen modulation control inverting input
25	GND	Ground
26	PDO	Phase detector input
27	DRF	Focus detect RF comparator output
28	VCOC	VCO control amplifier output
29	VCO-	VCO control amplifier inverting input
30	FSW	Focus switch
31	FEAO	Focus error amplitier output
32	FEA	Focus error amplifier inverting input
33	FEA+	Focus error amplifier non-inverting input
34	BHLD	Negative-peak (bottom) hold output
35	PHLD	Peak hold output
36	RFSM	RF summing amplifier output
37	RFS-	RF summing amplitier inverting input
38	LDSW	Laser-diode switch
39	LDD	Laser-diode driver
40	VCC	Supply voltage
41	FIV1	Photodiodes A and C current-to-voltage converter input
42	FIV2	Photodiodes B and D current-10-voltage converter input
43	VEE	Supply voltage
44	VR1	Reference voltage
45	VR2	Reference voltage
46	EO	Photodiode E current-to-voltage converter output
47	E	Photodiode E current-to-voltage converter input
48	F	Photodiode F current-to-voltage converter input

Equivalent Clrcult

SPECIFICATIONS

Absolute Maximum Ratings

Paramater	Symbol	Rating	Unit
Supply voltage	$V_{C C}$	7	V
	$V_{E E}$	-7	V
Power dissipation	P_{D}	430	mW
Operating temperature range	Topr	-25 to 75	${ }^{\circ} \mathrm{C}$
Slorage temperature range	$\mathrm{T}_{\text {sig }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

$\mathrm{T}_{\mathbf{t}}=25 \mathrm{deg} . \mathrm{C}$

Parameter	Symbol	Rating	Unit
Supply voltage	$V_{C C}$	5	V
	$V_{E E}$	-5	V

Electrical Characteristics
$V_{c c}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{s}}=25 \mathrm{deg} . \mathrm{C}$

Parametar	Symbol	Condition	Rating			Unit
			min	typ	max	
Supply current	10.		12	17	22	mA
	IEE	LDSW OFF	11	15.5	20	mA

RF ampllfier
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{deg} . \mathrm{C}$

Parameter	Symbot	Condition	Rating			Unit
			min	H0	max	
DC offset voltage	V_{36-0}	Pins 41 and 42 are open circuit.	-300	-120	0	mV
Voltage gain	GV-36	Pins 41 and 42 source impedance $R_{g}=10 \mathrm{k} \Omega$, R_{36} to $37=22 \mathrm{k} \Omega$, $\mathrm{f}=200 \mathrm{kHz}$	25	28	31	dB
HIGH-level output voltage	$\mathrm{V}_{36} \mathrm{H}$	$R_{L}=10 \mathrm{k} \Omega$	4.0	4.2	4.3	V
Low-level output voltage	V_{36-L}	$R_{L}=10 \mathrm{k} \Omega$	-1.6	-1.3	-1.2	V
Passband frequency response variation	$\Delta \mathrm{A} v$	$\mathrm{f}=1 \mathrm{MHz} / 200 \mathrm{kHz}$	-3.0	-0.5	3.0	dB

Focus error amplifier

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{L}}=25 \mathrm{deg} . \mathrm{C}$

Parametar	Symbol	Condition	Rating			Unit
			min	typ	max	
DC offset voltage	V31-0	Pins 41 and 42 are open circuit.	-150	0	150	mV
Voltage gain	Gy/31	$\begin{aligned} & f=1 \mathrm{kHz}, \\ & R_{33} \text { to } G N D=120 \mathrm{kN}, \\ & R_{31} \text { to } 32=120 \mathrm{k} \Omega \end{aligned}$	31	34	37	dB
Voltage gain differential	$\Delta \mathrm{Gv}$	Pin 41 input vs. pin 42 input	-1.0	0	1.0	dB
HIGH-level output voltage	V_{31-H}	$R_{L}=10 \mathrm{k} \Omega$	4.1	4.25	4.6	V
LOW-level output voltage	V_{31-L}	$R_{L}=10 \mathrm{k} \Omega$	-4.6	-4.25	-4.1	V
Operating frequency	$\mathrm{f}_{\text {max }}$		20	200	-	kHz

Peak detector and hold circult

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{B}}=25$ deg. C

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
DC offset voltage	V_{35} to 36	Pins 41 and 42 are open circuit.	-100	-40	20	mV
Output voltage	V_{35-0}	$\mathrm{I}_{41}=\mathrm{I}_{42}=5 \mu \mathrm{~A}$	1.0	1.2	1.4	V

Negatlve-peak (bottom) detector and hold clrcult
$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{2}=25$ deg. C

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
DC offsel voltage	$V_{34} 1035$	Pins 41 and 42 are open circuit.	-100	0	100	mV
Output voltage	V_{34-0}	$l_{41}=l_{42}=5 \mu \mathrm{~A}$	1.0	1.2	1.4	V

Focus detect RF detector

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25 \mathrm{deg} . \mathrm{C}$

Parameier	Symbol	Condition	Rating			Unit
			min	typ	max	
HIGH-level oulput voltage	V^{27-4}	$I_{41}=I_{42}=3 \mu \mathrm{~A}$	4.0	4.2	4.5	V
LOW-level output voltage	$V_{27.1}$	$14 \%=142=1 \mu \mathrm{~A}$	0	0	0.5	V
HIGH-level offset voltage	V_{35-1}	V_{27} is HIGH	0.7	-	-	V
LOW-level ofiset voltage	V_{35-2}	V_{27} is LOW	-	-	0.1	V

Focus zero-crossing comparator

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{2}=25 \operatorname{deg} . \mathrm{C}$

Papamater	Symbol	Condition	Rating			Unit
			min	typ	max	
HIGH-level output voitage	$V_{18 \cdot H}$	Pins 41 and 42 are open circuit.	4.0	4.2	4.5	V
LOW-level output voltage	$V_{18.1}$	$1_{42}=2 \mu \mathrm{~A}$	-	0	0.5	V
HIGH-level offset voltage	$V_{31 \cdot 1}$	V_{18} is HIGH	-0.35	-	-	V
LOW-jevel offset voltage	V_{31-2}	V_{18} is LOW	-	-	-0.65	V

HIgh-frequency (HF) comparator

$\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25 \mathrm{deg} . \mathrm{C}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
HIGH-level output voltage	V_{17-4}	Pins 41 and 42 are open circuit.	4.0	4.2	4.5	V
LOW-level output vollage	V_{17-L}	$\mathrm{V}_{35}=0.8 \mathrm{~V}, \mathrm{~V}_{34}=0 \mathrm{~V}$	0	0	0.5	v
LOW-level offset voltage	$V_{35 \cdot 1}$	V_{17} is LOW, $\mathrm{V}_{34}=0 \mathrm{~V}$	0.7	-	-	V
HIGH-level offset voltage	V_{35-2}	V_{17} is $\mathrm{HIGH}, \mathrm{V}_{34}=0 \mathrm{~V}$	-	-	0.3	v
Operating frequency	$f_{\text {max }}$		100	500	-	kHz

Tracking error amplifier

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{L}}=25$ deg. C

Paramater	Symbol	Condition	Rating			Unit
			min	typ	max	
DC oftset voltage	V_{2-0}	$\begin{aligned} & R_{46} 1047=150 \mathrm{k} \Omega, \\ & R_{48} 101=150 \mathrm{k} \Omega \end{aligned}$	-150	0	150	mV
Voltage gain	Gv-2	Pins 47 and 48 source impedance $R_{g}=150 \mathrm{k} \Omega$	17	20	23	d8
Voltage gain differential	$\Delta \mathrm{Gy}$	Pin 47 input vs. pin 48 input	-1.0	0	1.0	d8
HIGH-level maximum oulput voliage	V_{2-H}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	3.9	4.15	4.4	V
LOW-level maximum output voliage	V_{2-L}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	-4.4	-4.15	-3.9	V
Operating frequency	$f_{\text {max }}$		20	200	-	kHz

Tracking preamplifier

$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathbf{1}}=25 \mathrm{deg} . \mathrm{C}$

Parameler	Symbol	Condition	Rating			Unit
			min	typ	max	
DC offset voltage	V_{7-0}	$R_{46} 1047=150 \mathrm{k} \Omega$ R_{48} to $1=150 \mathrm{k} \Omega$. Pins 5, 6 and 7 are open circuit.	-250	0	250	mV
Voltage gain	Gv. 7	Pins 47 and 48 source impedance $R_{g}=150 \mathrm{k} \Omega$. Pins 5, 6 and 7 are open circuit.	23	26	29	dB
HIGH-level maximum outpat voltage	V_{7-H}		3.9	4.2	4.4	V
LOW-level maximum output voltage	V_{7-L}		-4.4	-4.2	-3.9	V
Operating frequency	$t_{\text {max }}$		20	200	-	kHz

Tracking error slice comparator

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{t}}=25 \mathrm{deg} . \mathrm{C}$

Paramater	Symbol	Condition	Rating			Unit
			min	typ	max	
HIGH-level oulput voltage	$\mathrm{V}_{16 \text {-H1 }}$	$\mathrm{V}_{3}=0.5 \mathrm{~V}, \mathrm{R}_{3}=15 \mathrm{k} \Omega$	4.0	4.2	4.5	V
	V_{16-12}	$\begin{aligned} & v_{3}=0.5 \text { to } 0.1 \mathrm{~V} \\ & \text { (hysteresis), } R_{3}=15 \mathrm{k} \Omega \\ & \hline \end{aligned}$	4.0	4.2	4.5	
LoW-level output vollage	$V_{18.21}$	$\begin{aligned} & V_{3}=-0.5 \mathrm{~V}, \\ & R_{3}=15 \mathrm{k} \Omega \end{aligned}$	0	0	0.5	v
	V_{16-12}	$\begin{aligned} & \begin{array}{l} v_{3}=-0.5 \text { to } 0 \mathrm{~V} \\ \text { (hysteresis), } \end{array} \mathrm{B}_{3}=15 \mathrm{k} \Omega \\ & \hline \end{aligned}$	0	0	0.5	
Operating frequency	$1_{\text {max }}$	$\begin{aligned} & 0.5 \mathrm{~V} \text { sine wave, } \\ & \mathrm{R}_{3}=15 \mathrm{k} \Omega \end{aligned}$	100	500	-	kHz

Jump pulse amplifier

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{e}}=25 \mathrm{deg} . \mathrm{C}$

Parametar	Symbol	Condition	Rating			Unit
			min	typ	max	
DC offsel voltage	$V_{10.0}$	$V_{11}=0 V_{1} V_{12}=0 \mathrm{~V}$	-20	0	20	mV
HIGH-level maximum output voltage	V_{10-4}	$V_{12}=5.0 \mathrm{~V}, V_{11}=0 \mathrm{~V}$	3.0	3.3	3.6	V
LOW-level maximum output voltage	V_{10-1}	$V_{11}=5.0 \mathrm{~V}, V_{12}=0 \mathrm{~V}$	-3.6	-3.3	-3.0	V
Operating frequency	$f_{\text {max }}$		100	150	-	kHz

VCO control ampllfier

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{2}=25 \mathrm{deg} . \mathrm{C}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
DC offset voltage	$V_{29.0}$		2.2	2.4	2.6	V
Voltage gain	Gy-28	$\begin{aligned} & V_{26}=100 \mathrm{mV}, \\ & t=1 \mathrm{kHz} \end{aligned}$	17	20	23	dB
HIGH-level maximum output voltage	$\mathrm{V}_{28-\mathrm{H}}$	$\begin{aligned} & V_{28}=5.0 \mathrm{~V} \\ & R_{26}=10 \mathrm{k} \Omega \end{aligned}$	4.0	4.3	4.5	V
LOW-level maximum output voitage	V_{29}-L	$V_{26}=0 \mathrm{~V}, \mathrm{R}_{26}=10 \mathrm{k} \Omega$	-	0.7	1.0	V
Operating frequency	$f_{\text {fresp }}$	Sine wave input on pin 26	200	500	-	kHz

Slice level control amplifier
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25 \mathrm{deg} . \mathrm{C}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
DC offset voltage	V_{22-0}	$\begin{aligned} & R_{22} \text { vo } 24=10 \mathrm{k} \Omega, \\ & V_{23}=2.5 \mathrm{~V}, \\ & R_{23}=10 \mathrm{k} \Omega \end{aligned}$	2.4	2.5	2.6	V
Voltage gain	Gy-22	$\mathrm{Rg}_{\mathrm{g}}=1 \mathrm{k} \Omega^{1} \mathbf{1}_{24}=1 \mathrm{kHz}$	17	20	23	$d B$
HIGH-level maximum output voltage	$\mathrm{V}_{22 \text { - }}$		4.0	4.25	4.5	V
LOW-level maximum output vollage	V_{22}-L		-	0.75	1.0	\checkmark

Focus swltch

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25 \mathrm{deg} . \mathrm{C}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
DC offsel voltage	V_{30-1}	$\begin{aligned} & V_{30}=5.0 \mathrm{~V} \\ & R_{30}=10 \mathrm{k} \mathrm{\Omega}, \\ & V_{20}=5.0 \mathrm{~V} \end{aligned}$	-30	10	70	mV
	\dot{V}_{30-2}	$\begin{aligned} & V_{30}=1.0 \mathrm{~V}, \\ & R_{30}=10 \mathrm{k} \mathrm{\Omega}, \\ & V_{20}=5.0 \mathrm{~V} \end{aligned}$	-10	0	40	mV

LA9200NM,9201M

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
DC offset vollage	V_{30-3}	$\begin{aligned} & V_{30}=-5.0 \mathrm{~V}, \\ & R_{30}=10 \mathrm{k} \Omega_{1} \\ & V_{20}=5.0 \mathrm{~V} \end{aligned}$	-35	-18	5	mV
	$V_{30.4}$	$\begin{aligned} & V_{30}=-1.0 \mathrm{~V} \\ & R_{30}=10 \mathrm{k} \Omega_{1} \\ & V_{20}=5.0 \mathrm{~V} \end{aligned}$	-15	-3	30	mV

Tracking OFF switch

$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{L}}=25 \mathrm{deg} . \mathrm{C}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
DC offsel vollage	$V_{B .1}$	$\begin{aligned} & V_{B}=5.0 \mathrm{~V}, R_{B}=20 \mathrm{k} \Omega, \\ & V_{15}=5.0 \mathrm{~V} \end{aligned}$	-20	14	50	mV
	$V_{8.2}$	$\begin{aligned} & V_{B}=1.0 \mathrm{~V}, R_{B}=20 \mathrm{kS} . \\ & V_{15}=5.0 \mathrm{~V} \end{aligned}$	-10	5	40	mV
	$V_{\text {E. }}$	$\begin{aligned} & V_{8}=-5.0 \mathrm{~V} \\ & R_{B}=20 \mathrm{k} \Omega_{1} V_{15}=5.0 \mathrm{~V} \end{aligned}$	-25	-10	5	mV
	$V_{\text {B } 4}$	$\begin{aligned} & V_{8}=-1.0 \mathrm{~V}, \\ & R_{8}=20 \mathrm{k} \Omega, V_{15}=5.0 \mathrm{~V} \end{aligned}$	-15	0	15	mV

Tracking galn switch

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25 \mathrm{deg} . \mathrm{C}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
DC oftset vollage	$V_{0.1}$	$\begin{aligned} & V_{9}=5.0 \mathrm{~V}_{1} \mathrm{R}_{9}=20 \mathrm{k} \Omega_{1} \\ & \mathrm{~V}_{14}=5.0 \mathrm{~V} \end{aligned}$	0.9	1.1	1.3	V
	$V_{\theta-2}$	$\begin{aligned} & V_{9}=1.0 \mathrm{~V} \mathrm{~V}_{9}=20 \mathrm{k} \Omega_{1} \\ & \mathrm{~V}_{14}=5.0 \mathrm{~V} \end{aligned}$	0.15	0.23	0.35	V
	$V_{0.3}$	$\begin{aligned} & V_{9}=-5.0 \mathrm{~V} \\ & R_{B}=20 \mathrm{k} \Omega_{1} \quad V_{14}=5.0 \mathrm{~V} \end{aligned}$	-1.3	-1.16	-0.9	V
	$V_{9.4}$	$\begin{aligned} & V_{9}=-1.0 \mathrm{~V} \\ & R_{9}=20 \mathrm{k} \Omega_{1} V_{14}=5.0 \mathrm{~V} \end{aligned}$	-0.3	-0.2	-0.1	V

Tracking hold switch

$\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25 \mathrm{deg} . \mathrm{C}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
DC offset voltage	$V_{0.5}$	$\begin{aligned} & V_{9}=5.0 \mathrm{~V}, R_{g}=20 \mathrm{k} \Omega, \\ & V_{13}=5.0 \mathrm{~V} \end{aligned}$	-20	14	50	mV
	$V_{9.6}$	$\begin{aligned} & V_{\theta}=1.0 \mathrm{~V}, R_{9}=20 \mathrm{k} \Omega, \\ & V_{13}=5.0 \mathrm{~V} \end{aligned}$	-10	5	40	mV
	V V_{7}	$\begin{aligned} & V_{g}=-5.0 \mathrm{~V} \\ & R_{g}=20 \mathrm{k} \Omega V_{13}=5.0 \mathrm{~V} \end{aligned}$	-25	-10	5	mV
	$V_{0 \cdot 8}$	$\begin{aligned} & V_{g}=-1.0 V_{1} \\ & R_{g}=20 \mathrm{k} \Omega_{1} V_{13}=5.0 \mathrm{~V} \end{aligned}$	-45	0	15	mV

Laser ON/OFF switch

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{deg} . \mathrm{C}$

Paramater	Symbol	Condition	Rating			Unit
			min	typ	max	
ON vollage	$V_{30-0 N}$	$\begin{aligned} & R_{399} \mathrm{to} 25=47 \Omega_{1} \\ & V=0 \mathrm{~V}, R_{38}=1 \mathrm{k} \Omega \end{aligned}$	-	-4.4	-4.0	V
OFF voltage	$V_{3 s \text {-0F }}$	$\begin{aligned} & R_{39} \text { to } 25=47 \Omega, \\ & V_{38}=4.5 \mathrm{~V}, \mathrm{R}_{38}=1 \mathrm{k} \Omega \end{aligned}$	-0.1	0	0	V

Measurement Circult

Typical Performance Characteristics

RF summing amplifier frequency response

Focus error amplifier frequency response

Tracking error preamplifier trequency response

RF Summing Amplifier

The combined current from photodiodes A and C, ($\mathrm{A}+\mathrm{C}$), is input on FIV1, and the combined current from B and $D,(B+D)$, on FIV2. These signals are curren-to-voltage converted and then input to the RF summing amplifier as shown in figures 1 and 2 . The summing amplifier output, $(\mathrm{A}+\mathrm{C})+(\mathrm{B}+\mathrm{D})$ on RFSM, is filtered externally to generate the HF (eye pattern) signal. Note that the output voltage on RFSM should be between 1 and $2 \mathrm{~V}_{\mathrm{pp}}$.

FUNCTIONAL DESCRIPTION

Tracking error amplifier trequency response

Overall open-loop frequency response

Figure 1. Photodiodes

Figure 2. RF summing amplifier

Focusing

Focusing is started when pin FST of the digital signal processor, the LC7860K for example, goes LOW and the objective lens is lowered. The lens is then raised gradually while FOCS is HIGH. When the lens reaches the in-focus position and FEAO is less than VR3-0.5 V, $\overline{\text { FZD }}$ goes LOW. The FOCS signal is reset and FSW is open circuited. The focusing servocontroller then turns ON and if DRF is HIGH, focusing servocontroller operation continues.

Focusing Servocontroller

Focusing is controlled by monitoring the difference in luminance received by the pickup photodiodes.

Focus error amplifier

The signals from the photodiode current-to-voltage converters are subtracted to provide a measure of the differential, or focus, error. The focus error amplifier output, is $(B+D)-(A+C)$ on FEAO. A typical output is shown in figure 3.

Figure 3. Focus error amplifier output

Focus detect RF comparator

The RF comparator output on DRF goes HIGH when the peak RF summing amplifier input signal, $(A+C)+$ $(B+D)$, exceeds the reference voltage, $V_{R 1}$, as shown in figure 4.

Figure 4. RF detector output

Focus zero-crossing comparator

This detects the zero-crossing points of the focus error amplifier output. The zero-crossing comparator output on $\overline{\mathrm{FZD}}$ goes HIGH when the focus error amplifier exceeds $\left(\mathrm{V}_{\mathrm{R} 3}-0.5 \mathrm{~V}\right)$ as shown in figure 5.

Figure 5. Zero-crossing comparator output

Focus switch

The focus switch is used to hold the focus lens at the reference position during startup. When FOCS goes HIGH, FSW is connected to VR3, temporarily overriding the focus error amplifier output as shown in figure 6.

Figure 6. Focus switch

Tracking Servocontroller

The tracking servocontroller is applied to three beams-the main beam and two sub-beams-to maintain tracking accuracy as shown in figure 7.

Figure 7. Tracking beams
The reflected light from sub-beams 1 and 2 is received by photodiodes E and F, respectively. When the tracking drifts laterally, the reflected light received from each beam is different. This differential is used to realign tracking.

Tracking error amplifier

The current from pickup photodiode E is input on E (pin 47), and from photodiode F, on F (pin 48). These signals are current-to-voltage converted and then input
to the tracking error amplifier. The tracking error amplifier is a difference amplifier and its output, ($F-E$) on TEAO, is shown in figure 8.

Figure 8. Tracking error amplifier

TrackIng error preamplifier

This amplifier compensates the gain and phase responses of the tracking servocontroller loop.

Jump pulse ampllfier

This amplifier is used to jump tracks when selecting a required track or when braking.

High-frequency level comparator

The comparator output on HFL is used to detect the off-track condition. It is also used with the output on TES to provide the digital signal processor, the LC7860K for example, with brake timing control information as shown in figures 9 and 10 .

Figure 9. High-frequency level comparator signal

Tracking error slice comparator

This detects the zero crossing of the tracking error signal to provide the digital signal processor, the LC 7860 K for example, with the number of tracks crossed while in jump mode or the brake timing control information using the phase difference between HFL and TES as shown in figure 10.

PH

BH

HFL

TES

TE

Figure 10. Tracking error signals
The tracking error slice comparator has a Schmitt-trigger input to eliminate incorrect operation caused by noise.

Servocontroller OFF switch

When TOFF goes HIGH, TOFS is connected to VR3 turning OFF the tracking servocontroller as shown in figure 11.

Servocontroller gain control switch

When TGL goes HIGH, THDS is connected to VR3 through a $5.6 \mathrm{k} \Omega$ resistor reducing the servocontroller loop gain as shown in figure 11.

Servocontroller hold control switch

When THLD goes HIGH, THDS is connected to VR3 holding the servocontroller output voltage as shown in figure 11.

Figure 11. Control switches

Voltage-controlled-oscillator Control
 Ampilifer

The output signal from the PDO pin of the digital signal processor, the LC7860K for example, is input to the amplifier on PDO. The amplifier output voltage on VCOC controls the oscillator in the phase-locked loop to maintain synchronicity with the EFM signal (channel bit rate of $4.3218 \mathrm{Mb} / \mathrm{s}$).

Slice Level Control Amplifler

This maintains the duty ratio of the HF (eye pattern) signal constant at 50%. When the HF signal is input to the digital signal processor, the LC7860K for example, on pin EFMIN, an amplitude limited, in-phase signal is input on EFMO, and an amplitude limited, oppo-site-phase signal, on EFMO. The slice level control amplifier output on SLCO is fed back to EFMIN which automatically maintains the duty ratio at 50%.

Laser-dlode Switch

The current drive for the pickup laser on LDD is switched ON when LDSW is LOW, and OFF, when HIGH.

Reference Voltages

The voltage source, $\mathrm{V}_{\text {rif }}$, generates the reference voltages required for single- and dual-supply voltage operation. These voltages are $\mathrm{V}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{R} 3}=2.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R} 1}=1.5 \mathrm{~V}$ for single supply operation, and $\mathrm{V}_{\mathrm{R} 1}=\mathrm{V}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{R} 3}=0 \mathrm{~V}$ for dual supply operation.

TYPICAL APPLICATIONS

Single-ended Power Supply Operation

Dual Power Supply Operation

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and empioyees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties

