LA9605W

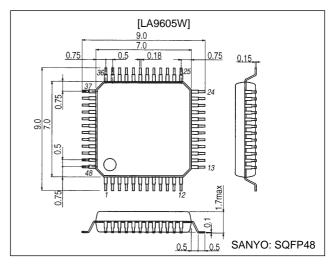
MD Player RF and Matrix Signal-Processing IC

Overview

The LA9605W integrates MiniDisk playback functions, including servo error signal generation, RF signal processing, and wobble signal binarization output on a single chip. The LA9605W, when combined with an LC89640, can implement a complete MD player system.

Features

- Allows the servo error signal level to be set to an arbitrary level using a VCA circuit.
- Few peripheral components required.
- Ultraminiature package


Functions

- Servo signal I-V conversion amplifier
- Pit/groove switching RF amplifier
- RF equalizer amplifier
- Servo signal VCA
- APC circuit
- Focus error amplifier
- Tracking error amplifier
- HFL circuit
- Defect detection circuit
- ADIP amplifier
- Pre-pit circuit (pit/groove discrimination circuit)
- ADIPCR

Package Dimensions

unit: mm

3163A-SQFP48

SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

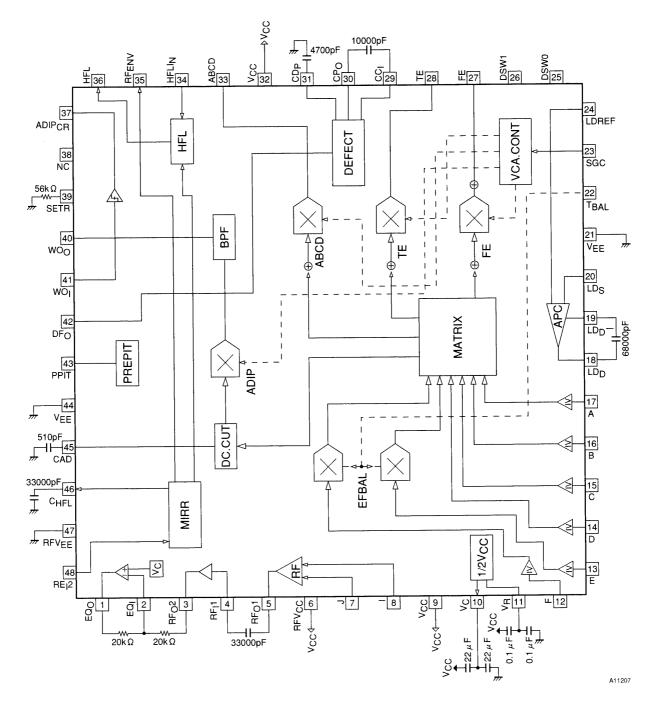
SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

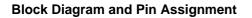
Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

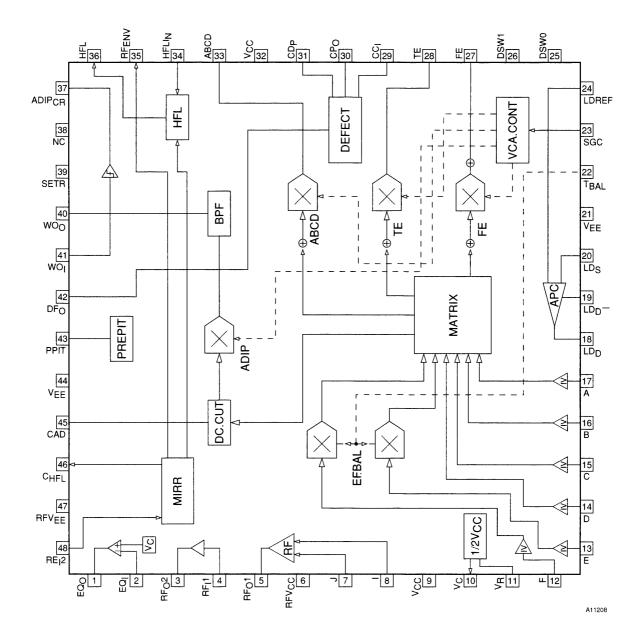
Specifications Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7	V
Allowable power dissipation	Pd max	When mounted on a 114.3 \times 76.1 \times 1.6-mm single-sided glass-epoxy printed circuit board. Ta \leq 75 °C	350	mW
Operating temperature	Topr		-25 to +75	°C
Storage temperature	Tstg		-40 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$


Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		5	V
Operating supply voltage range	V _{CC} op		2.7 to 5.5	V


Electrical Characteristics at Ta = 25° C, V_{CC} = 5 V


Doromot	or	Symbol	Conditions		Ratings		Unit
Parameter		Symbol	Conditions	min	typ	max	Unit
Current drain		I _{CC}		18	32	46	mA
[RF AMP GROVE]							
Gain		VG _{RFMG} 1	$EQ_O/I: J = V_C$	27	30	33	dB
[RF AMP MO.PIT]				·			
Offset		V _{OS RFMP} 1	$RF_01: I = J = V_C$	V _C – 245	V _C – 185	V _C – 125	mV
Gain		VG _{RFMP} 1	$EQ_O/I: I = J$	15	18	21	dB
[RF AMP AL]							
Offset		V _{OS RFAP} 1	$RF_01: I = J = V_C$	V _C – 152	V _C - 92	V _C - 32	mV
Gain		VG _{RFAP} 1	$EQ_O/I: I = J = V_C$	5.5	8.5	11.5	dB
[RF AMP]				·			
Output level H		V _{ORFH} 1	$EQ_0 : RFI1 = V_C + 1 V$	3.5	4.1		V
		V _{ORFL} 1	$EQ_0 : RFI1 = V_C - 1 V$		0.9	1.5	V
[ABCD GR]	·			·			
Gain		VG _{ABG} 1	ABCD/A (10 kHz) : A = B = C = D, SGC = 0.78 V	17.5	20.5	23.5	dB
Outrast Jassal	Н	V _{OABGH} 2	ABCD : A = B = C = D = V _C - 400 mV, SGC = 0.78 V	4.5	4.9		V
Output level	L	V _{OABGL} 2	ABCD : A = B = C = D = V _C + 400 mV, SGC = 0.78 V		0.1	0.5	V
[ABCD PIT]							
Gain		VG _{ABP} 1	ABCD/A (10 kHz) : A = B = C = D, SGC = 0.3 V	10.6	13.6	16.6	dB
Frequency characte	ristics	V∆G _{ABP} 1	ABCD/A (10 kHz) – ABCD/A (35 kHz), SGC = 0.3 V	3.9	6.9	9.9	dB
[FOCS]							
Outrast laws	Н	V _{OFOH} 1	FE : B = D = V_C + 825 mV, A = C = V_C , SGC = 0.3 V	4.5	4.9		V
Output level	L	V _{OFOL} 1	FE : B = D = $V_C - 825 \text{ mV}$, A = C = V_C , SGC = 0.3 V		0.1	0.5	V
Gain		V _{GFO} 1	FE/A (5 kHz) : A = -B = C = -D, SGC = 0.3 V	13.9	16.9	19.9	dB
Frequency characteristics		V∆ _{GFO} 1	FE/A (5 kHz) – FE/A (26 kHz) : A = –B = C = –D, SGC = 0.3 V	0.4	3.4	6.4	dB
[TE GR]						1	
	Н	V _{OTEGH} 1	TE : $F = V_{C} + 200 \text{ mV}$, $E = V_{C}$, SGC = 0.78 V	4.5	4.9		V
Output level	L	V _{OTEGL} 1	TE : F = $V_C - 200 \text{ mV}$, E = V_C , SGC = 0.78 V		0.1	0.5	V
		VG _{TEG} 1	TE/E (5 kHz) : E = –F, SGC = 0.78 V	31.4	34.4	37.4	dB
Frequency characteristics VAGTEG		V∆G _{TEG} 1	TE/E (5 kHz) – TE/E (38 kHz) : E = –F, SGC = 0.78 V	1.8	4.8	8.8	dB
[TE PIT]						1	
		VG _{TEP} 1	TE/E (5 kHz) : E = -F, SGC = 0.3 V	25.2	28.2	31.2	dB
Frequency characte	ristics	V∆G _{TEP} 1	TE/E (5 kHz) – TE/E (38 kHz) : E = –F, SGC = 0.3 V	1.8	4.8	8.8	dB
[ADIP]						1	
Outrust In	Н	V _{OADH} 1	$CAD : A = D = V_{C} + 0.4 V, B = C = V_{C}$	1.4	1.7	2.0	V
Output level	L	V _{OADL} 1	$CAD : A = D = V_C - 0.4 V, B = C = V_C$	3.1	3.3	3.6	V

Doromotor		Sumbol	Conditions		Ratings		Unit
Parameter		Symbol	Conditions	min	typ	max	Unit
[APC LDON]							
Output level	н	V _{OLH} 1	$LD_D : LD_{REF} = 0 V, LD_S = 1 V$	3.7	4.2	4.7	V
Oulput level	L	V _{OLL} 1	$LD_D : LD_{REF} = 1 V, LD_S = 0 V$	0.3	0.8	1.3	V
[APC LDOFF]							
Off voltage		V _{OLOF} 1	$LD_D : LD_{REF} = 1 V, LD_S = 0 V$	3.7	4.2	4.7	V
[HFL]							
Output level	Н	V _{OHFLH} 1	$HFL : HFL_{IN} = V_C - 0.1 V$	4.6	4.8		V
Output level	L	V _{OHFLL} 1	HFL : HFL _{IN} = V _C		0.2	0.4	V
[DEFCT]							
Output level	Н	V _{ODEFH} 1	DFO : CC _I = 1.5 V	4.6	4.9		V
Output level	L	V _{ODEFL} 1	$DFO : CC_1 = OPEN, A = B = C = D = V_C - 200 \text{ mV}$		0.1	0.4	V
[VC reference voltage]							
		VO _{SC}	V _C :	2.35	2.5	2.65	V
		VO _{CLSO}	$V_{C}: V_{C} - 1 \text{ mA}$	2.35	2.5	2.65	V
		VO _{CLSI}	V _C : V _C + 1 mA	2.35	2.5	2.65	V
[PREPIT MO]				•			
High-level output volta	ge	VO _{PPH} 1	PPIT : I = J = 200 kHz (95 mVp-p + V _C + 0.125 V)	4.6	4.8		V
Low-level output voltage	ge	VO _{PPL} 1	PPIT : I = J = 30 kHz (95 mVp-p + V _C + 0.125 V)		0.2	0.4	V
High/low level switching time		DTPP1	PPIT : I = J = 200 kHz to 30 kHz	70	150	230	
		DIFFI	(95 mVp-p + V _C + 0.125 V)	70	150	230	μs
[BPF]			1		1		
Gain		VG _{BF} 1	WO _{O/A} (22.05 kHz) : A = -B = -C = D, SGC = 0.3 V	23.8	26.8	29.8	dB
Filter characteristics		VG _{BF} 2	VG _{BF1} /VG _{BF2} : (16 kHz), SGC = 0.3 V	0.8	4.8	9.8	dB
		VG _{BF} 3	VG _{BF1} /VG _{BF3} : (30 kHz), SGC = 0.3 V	0.4	4.4	9.4	dB
[I – V]							-
IV voltage A		ΔV_{RA}	Α : V (–1 μΑ) – V (–2 μΑ)	70	100	130	mV
IV voltage B		ΔV_{RB}	B : V (–1 µA) – V (–2 µA)	70	100	130	mV
IV voltage C		ΔV_{RC}	C : V (–1 µA) – V (–2 µA)	70	100	130	mV
IV voltage D		ΔV_{RD}	D : V (–1 µA) – V (–2 µA)	70	100	130	mV
IV voltage E ΔV_{RE}		ΔV_{RE}	Ε : V (–1 μΑ) – V (–2 μΑ)	70	100	130	mV
IV voltage F ΔV _{RF}		ΔV_{RF}	F : V (–1 µA) – V (–2 µA)	70	100	130	mV
$Ta = 25^{\circ}C, V_{CC} = 2.7 V$							
[FOCS]							
Offset		V _{OSFO} 1	FE : A = B = C = D = OPEN, SGC = 0.78 V	-300	0	+300	mV
[COMP]			•	I	1		
Offset		V _{OSCO} 1	WO ₁ : WO ₁ = OPEN	-15	0	+15	mV

Test Circuit

Pin Functions

Pin No.	Pin	I/O	Function	Equivalent circuit
1	EQ _O	0	RF equalizer output	1 VCC 1 A11209
2	EQI	I	RF equalizer input	2
3	RF ₀ 2	0	RF output	(4) V _{CC} ≨10kΩ ↓ ↓ ↓ ↓ ↓ ↓
4	RF _I 1	I	RF AC coupled input	
5	RF ₀ 1	ο	RF AC coupled output	V_{CC} (5) (5) (5) $(20k\Omega)$ $(20k\Omega)$ (5) $(20k\Omega)$
6	RFV _{CC}	Р	RF block power supply	
7	J		I/V converted RF signal input	8 \$10kΩ 7 10kΩ \$56kΩ \$\$56kΩ \$7.5kΩ \$
8	I		I/V converted RF signal input	10kΩ 10kΩ 10kΩ 20kΩ 20kΩ 20kΩ 411213

Pin No.	Pin	I/O	Function	Equivalent circuit
9	V _{CC}	Р	Matrix block power supply	
10	V _C	0	1/2 V _{CC} output (reference voltage)	V_{CC} \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
11	V _R	I	1/2 V _{CC} input	1kΩ 1 25kΩ \$75Ω \$51kΩ # # (10 A11214
12 13	F E		Side beam signal inputs	(13) ↓
14 15 16 17	D C B A	I	Main beam signal inputs	$\begin{array}{c} 13 \\ 14 \\ 15 \\ 15 \\ 16 \\ 17 \end{array}$
18	LD _D	0	APC output	$\begin{array}{c ccccc} & & & & & \\ \hline 19 & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & $
19	LD _D -	I	APC phase compensation capacitor connection	18 75Ωξ 90kΩ ↓ 75Ωξ 90kΩ ↓ μ ₹90kΩ ↓ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ
20	LDS		I/V converted laser optical intensity input	
24	LD _{REF}		Laser power setting input	24 <u></u>
21	V _{EE}	Р	Matrix block ground	
22	T _{BAL}	1	Tracking error signal balance adjustment voltage input	(22)
23	SGC	. 1	V _{CA} gain control voltage input (ground reference)	23KΩ

Pin No. Pin I/O Function Equivalent circuit 25 DSW0 I Disc mode switching signal input, laser off input. High: Low reflectance disc Low: High reflectance disc If both DSW0 and DSW1 are low, the laser is off. I I 26 DSW1 I Disc mode switching signal input, laser off input. High: Tracking is over a pit Low: Tracking is over a groove If both DSW0 and DSW1 are low, the laser is off. I I 27 FE O Focus error signal output I I 28 TE Tracking error signal output I I 29 CC1 I Defect peak hold signal AC coupled input I 29 CC1 I Defect peak hold signal AC coupled input I
25 DSW0 High: Low reflectance disc Low: High reflectance disc If both DSW0 and DSW1 are low, the laser is off. 26 DSW1 Disc mode switching signal input, laser off input High: Tracking is over a pit Low: Tracking is over a groove If both DSW0 and DSW1 are low, the laser is off. Image: Comparison of the pit state of the pit
26 DSW1 Disc mode switching signal input, laser off input High: Tracking is over a pit Low: Tracking is over a groove If both DSW0 and DSW1 are low, the laser is off. Image: Construction of the picture Image: Construle Image: C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
28 TE Tracking error signal output 29 CC1 I Defect peak hold signal AC coupled input $29 + 25k\Omega$ 29 CC1
29 CC_1 I Defect peak hold signal AC coupled input 1000000000000000000000000000000000000
V _{CC}
30 CP ₀ O Defect peak hold signal output 30 1kΩ
31 C_{DP} O Defect peak hold capacitor connection $31 \frac{\sqrt{CC}}{1k\Omega}$
32 V _{CC} P ADIP block power supply

Dia Na	Dir	1/0	Europhica.	Envirolant sinuit
Pin No.	Pin	I/O	Function	Equivalent circuit VCC
33	ABCD	ο	Main beam optical intensity signal output	33 50Ω 50Ω 50Ω 50Ω 50Ω 50Ω 50Ω 50Ω
				50kΩ ₹75Ω 50kΩ ₹75Ω ± ₹75Ω
34	HFL _{IN}	I	HFL detection optical intensity signal AC coupled input used in groove mode	34 60kΩ ₹100kΩ A11226
35	RF _{ENV}		RF envelope signal output	$35 \xrightarrow{V_{CC}} \xrightarrow{0}$
46	C _{HFL}	0	Mirror peak hold capacitor connection	46
36	HFL	0	HFL signal (tracking on/off signal) output	36

Pin No.					
37ADPCR0ADP carrier output 39 100 -10 100 38NC -1 No connection -100 39SETR1Bandpass filler fo setting 39 30 110 40WOQQVooble signal output 90 90 90 90 41WOQ1Vooble signal output 90 90 90 42DFQQDefect detection signal output 90 90 43PPITQPhigroove 90 90	Pin No.	Pin	I/O	Function	Equivalent circuit
39SETR1Bandpass filter fo setting40WO00Wobble signal output $\underbrace{\Psi_{CC}}_{\frac{1}{2750}}$ 41WO11Wobble signal AC coupled input $\underbrace{\Psi_{CC}}_{\frac{1}{2750}}$ 41WO11Wobble signal AC coupled input $\underbrace{\Psi_{CC}}_{\frac{1}{2750}}$ 42DF00Defect detection signal output $\underbrace{\Psi_{CC}}_{\frac{1}{150}}$ 43PPIT0Ptitgroove $\underbrace{\Psi_{CC}}_{\frac{1}{150}}$	37	ADIP _{CR}	ο	ADIP carrier output	(37)
39 SETR 1 Bandpass filter to setting 40 WO ₀ 0 Wobble signal output \sqrt{CC} (a) $\sqrt{T50}$ (c)	38	NC	_	No connection	
40WOo0Wobble signal output $if T S \Omega$ $T S \Omega$ $T S \Omega$ $T S \Omega$ 	39	SETR	I	Bandpass filter fo setting	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40	WO _O	0	Wobble signal output	$\begin{array}{c} 40 \\ 40 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $
42DF00Defect detection signal output42 42 43PPIT0Pit/groove 43 11234	41	WOI	I	Wobble signal AC coupled input	1KΩ ≨50kΩ
43 PPIT O Pit/groove	42	DF _O	0	Defect detection signal output	(42)
44 V _{EE} P ADIP block ground	43	PPIT	ο	Pit/groove	(43)
	44	V _{EE}	Р	ADIP block ground	

Pin No.	Pin	I/O	Function	Equivalent circuit
45	CAD		Wobble DC cut capacitor connection	45 ↓ 300kΩ ↓ 1kΩ ↓ 300kΩ ↓ 1kΩ ↓ 1kΩ ↓ 1kΩ ↓ 1kΩ ↓ 1kΩ ↓ 1kΩ ↓ 1kΩ
47	RFV _{EE}	Р	RF block ground	
48	RF _I 2	I	RF signal input	48 30kΩ 30kΩ A11236

Specifications of any and all SANYO products described or contained herein stipulate the performance,
characteristics, and functions of the described products in the independent state, and are not guarantees
of the performance, characteristics, and functions of the described products as mounted in the customer's
products or equipment. To verify symptoms and states that cannot be evaluated in an independent device,
the customer should always evaluate and test devices mounted in the customer's products or equipment.

- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 1998. Specifications and information herein are subject to change without notice.