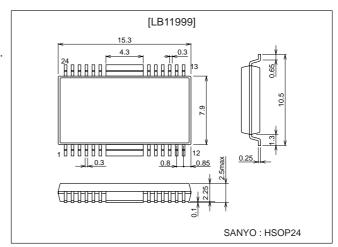
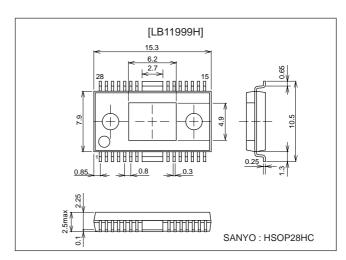


# LB11999,11999H

# Three-Phase Brushless Motor Drivers for CD-ROM Spindle Motor Driver (supports $44\times$ , $48\times$ , $50\times$ )


#### **Features**

- · Current linear drive
- · Control V type amplifier
- Separate power supply for output upper side bias circuit allows low output saturation by boosting this power supply only (useful for 5V power supply types).
- Upper side current detection technique loses loss voltage of current detection resistor. Voltage drop caused by this resistor reduces internal power dissipation of IC.
- · Built-in short braking circuit
- Built-in reverse blocking circuit
- · Hall FG output
- Built-in S/S function
- Built-in current limiter circuit (selectable, 2 steps)
- · Built-in Hall power supply
- · Built-in thermal shutdown circuit
- Supports 3.3V DSP


## **Package Dimensions**

unit: mm

#### 3227-HSOP24



#### 3234-HSOP28HC



- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

# **Specifications**

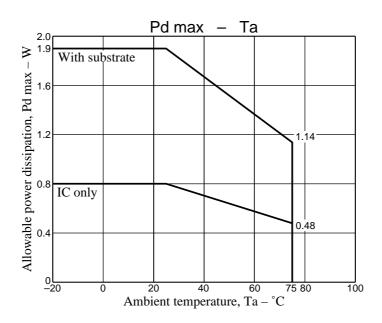
## Absolute Maximum Ratings at $Ta = 25^{\circ}C$

| Parameter                      | Symbol  | Conditions                | Ratings     | Unit |
|--------------------------------|---------|---------------------------|-------------|------|
| Maximum power supply voltage 1 | VCC1max |                           | 7.0         | V    |
| Maximum power supply voltage 2 | VCC2max |                           | 14.4        | V    |
| Maximum power supply voltage 3 | VCC3max |                           | 14.4        | V    |
| Maximum applied output voltage | Vomax   |                           | 14.4        | V    |
| Maximum applied intput voltage | Vimax   |                           | VCC1        | V    |
| Maximum output current         | Iomax   |                           | 1.3         | Α    |
| Allowable power dissipation    | Pdmax   | *With specified substrate | 0.8 (*1.9)  | W    |
| Operating temperature          | Topr    |                           | −20 to +75  | ℃    |
| Storage temperature            | Tstr    |                           | -55 to +150 | ℃    |

#### Allowable Operating Ranges at $Ta = 25^{\circ}C$

| Parameter              | Symbol | Conditions | Ratings   | Unit |
|------------------------|--------|------------|-----------|------|
| Power supply voltage 1 | VCC1   |            | 4 to 6    | V    |
| Power supply voltage 2 | VCC2   | ≥VCC1      | 4 to 13.6 | V    |
| Power supply voltage 3 | VCC3   |            | 4 to 13.6 | V    |

## Application Example at $Ta = 25^{\circ}C$


#### (1) 12V type

| Power supply pin | Conditions          | Ratings   | Unit |
|------------------|---------------------|-----------|------|
| VCC1             | Regulated voltage   | 4 to 6    | V    |
| VCC2 = VCC3      | Unregulated voltage | 4 to 13.6 | V    |

#### (2) 5V type

|   | Power supply pin | Conditions                                   | Ratings   | Unit |
|---|------------------|----------------------------------------------|-----------|------|
| ſ | VCC1 = VCC3      | Regulated voltage                            | 4 to 6    | V    |
|   | VCC2             | Boost-up voltage or regulated voltage (Note) | 4 to 13.6 | V    |

Note: When boost-up voltage is used at VCC2, output can be set to low-saturation.



# LB11999,11999H

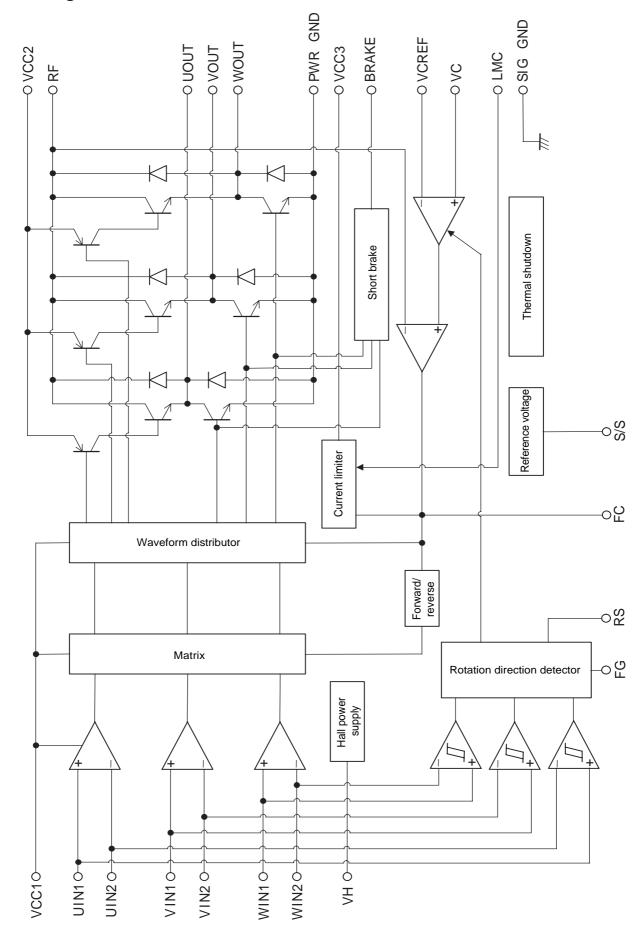
# Electrical Characteristics at $Ta = 25^{\circ}C$ , Vcc1 = 5V, Vcc2 = Vcc3 = 12V (unless otherwise specified)

| Doromotor                        | Cymbol | mbol Conditions                          |     | Ratings |          |       |        |
|----------------------------------|--------|------------------------------------------|-----|---------|----------|-------|--------|
| Parameter                        | Symbol | Conditions                               | min | typ     | max Unit |       |        |
| [Power supply current]           |        |                                          |     |         |          |       |        |
| Power supply current 1           | ICC1   | VC = VCREF                               |     | 8       |          | mA    | 1      |
| Power supply current 2           | ICC2   | VC = VCREF                               |     | 0       |          | mA    | 2      |
| Power supply current 3           | ICC3   | VC = VCREF                               |     | 150     | 250      | μΑ    | 3      |
| Output idle current 1            | ICC10Q | VS/S = 0V                                |     |         | 200      | μΑ    | 4      |
| Output idle current 2            | ICC2OQ | VS/S = 0V                                |     |         | 30       | μΑ    | 5      |
| Output idle current 3            | ICC3OQ | VS/S = 0V                                |     |         | 30       | μΑ    | 6      |
| [Output]                         |        | •                                        |     |         | •        |       |        |
| Saturation voltage, upper side 1 | VOU1   | IO = -0.5A, VCC1 = 5V, VCC2 = VCC3 = 12V |     | 1.0     |          | V     | 7      |
| Saturation voltage, lower side 1 | VOD1   | IO = 0.5A, VCC1 = 5V, VCC2 = VCC3 = 12V  |     | 0.3     |          | V     | 8      |
| Saturation voltage, upper side 2 | VOU2   | IO = -0.5A, VCC1 = VCC3 = 5V, VCC2 = 12V |     | 0.3     |          | V     | 9      |
| Saturation voltage, lower side 2 | VOD2   | IO = 0.5A, VCC1 = VCC3 = 5V, VCC2 = 12V  |     | 0.3     |          | V     | 10     |
| Current limiter setting voltage  | VCL1   | RRF = $0.33\Omega$ , LMC: OPEN           |     | 0.24    |          | V     | 11     |
|                                  | VCL2   | RRF = $0.33\Omega$ , LMC: GND            |     | 0.37    |          | V     | 11     |
| [Hall amplifier]                 |        |                                          | •   |         | •        |       |        |
| Common mode input voltage range  | VHCOM  |                                          | 1.2 |         | VCC1-1.0 | V     | 12     |
| Input bias current               | VHIB   |                                          |     | 1       |          | μΑ    | 13     |
| Minimum Hall input level         | VHIN   |                                          | 60  |         |          | mVp-p | 14     |
| [S/S pin]                        |        | •                                        |     |         | •        |       |        |
| High level voltage               | VS/SH  |                                          | 2.0 |         | VCC1     | V     | 15     |
| Low level voltage                | VS/SL  |                                          |     |         | 0.7      | V     | 16     |
| Input current                    | IS/SI  | VS/S = 5V                                |     |         | 200      | μΑ    | 17     |
| Leak current                     | IS/SL  | VS/S = 0V                                | -30 |         |          | μΑ    | 18     |
| [Control]                        |        |                                          |     |         |          |       |        |
| VC pin input current             | IVC    | VC = VCREF = 1.65V                       |     |         | 1        | μΑ    | 19     |
| VCREF pin input current          | IVCREF | VC = VCREF = 1.65V                       |     |         | 1        | μΑ    | 20     |
| Voltage gain                     | GVCO   | ΔVRE/ΔVC                                 |     | 0.35    |          | times | 21     |
| Startup voltage                  | VCTH   | VCREF = 1.65V                            | 1.5 |         | 1.8      | V     | 22     |
| Startup voltage width            | ΔVCTH  | VCREF = 1.65V                            | 50  |         | 150      | mV    | 23     |
| [Hall power supply]              |        |                                          |     |         |          |       | •      |
| Hall power supply voltage        | VH     | IH = 5 mA                                |     | 0.8     |          | V     | 24     |
| Allowable current                | IH     |                                          | 20  |         |          | mA    | 25     |
| [Thermal shutdown]               |        |                                          |     |         |          |       | •      |
| Operating temperature            | TTSD   |                                          | 150 | 180     | 210      | ∞     | Target |
| Hysteresis                       | ΔTTSD  |                                          |     | 15      |          | °C    | Target |
| [Short braking]                  |        |                                          |     |         |          |       |        |
| Brake pin at High level          | VBRH   |                                          | 4   |         | 5        | V     | 26     |
| Brake pin at Low level           | VBRL   |                                          | 0   |         | 1        | V     | 26     |

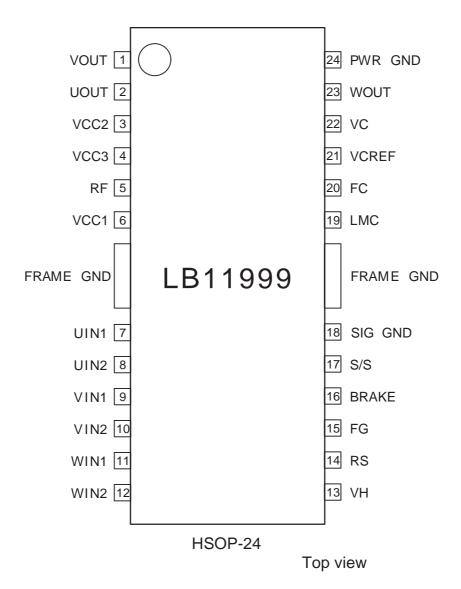
#### Note

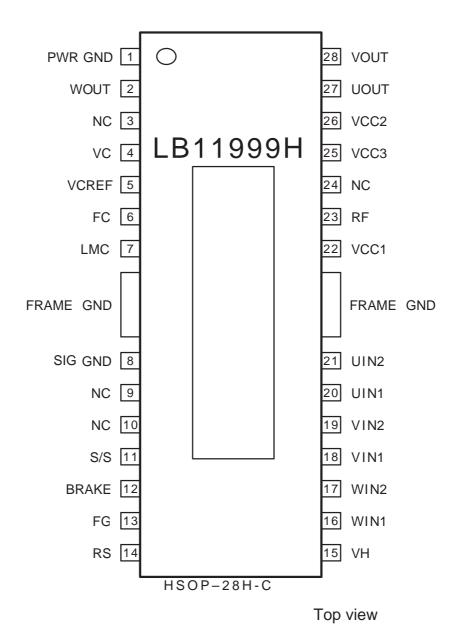
- During S/S OFF (standby), the Hall comparator is at High.
- Items shown to be "Target" are not measured.

## **Truth Table**

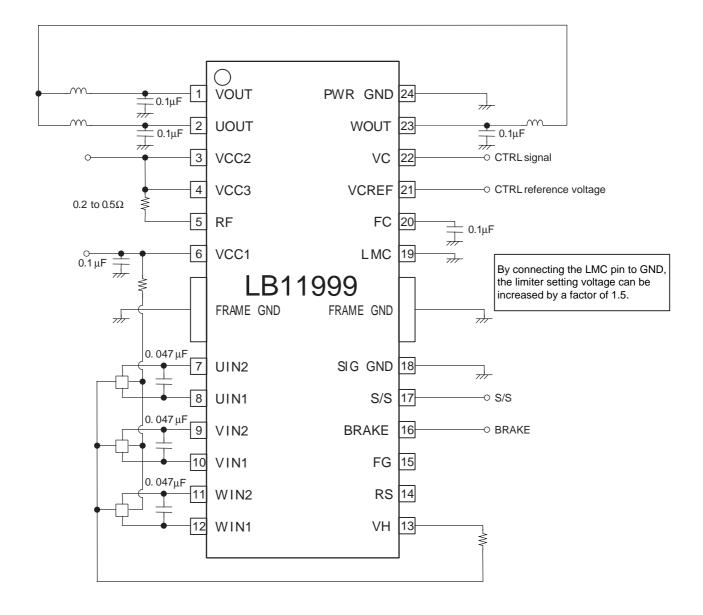

|   | Source             | Input |    |     | Control |
|---|--------------------|-------|----|-----|---------|
|   | Sink               | U     | V  | W   | VC      |
| 1 | Phase W -> Phase V | Н     | Н  | - 1 | Н       |
| ' | Phase V -> Phase W | '''   |    | _   | L       |
| 2 | Phase W -> Phase U | Н     | L  |     | Н       |
|   | Phase U -> Phase W |       | _  | ı   | L       |
| 3 | Phase V -> Phase W | 1     | L  | Н   | Н       |
| 3 | Phase W -> Phase V | _     | _  |     | L       |
| 4 | Phase U -> Phase V | 1     | Н  | _   | Н       |
|   | Phase V -> Phase U | _     |    | _   | L       |
| 5 | Phase V -> Phase U | Н     | L  | Н   | Н       |
|   | Phase U -> Phase V |       | _  | ''  | L       |
| 6 | Phase U -> Phase W | L     | Н  | Н   | Н       |
|   | Phase W -> Phase U |       | 11 |     | L       |

Input:

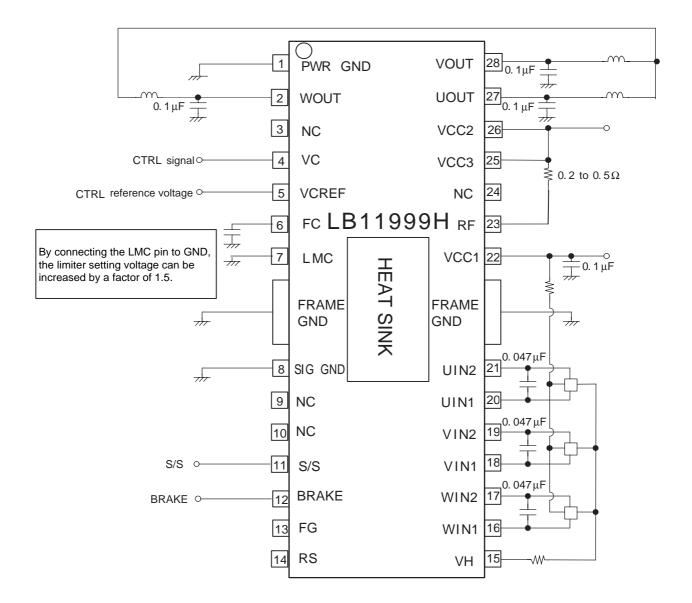

H: Input 1 is higher in potential than input 2 by at least 0.2V.


L: Input 1 is lower in potential than input 2 by at least 0.2V.

# **Block Diagram**




# **Pin Assignment**






# **Sample Application Circuit (LB11999)**



# **Sample Application Circuit (LB11999H)**



# Pin Description \*( ): LB11999H

| Pin Des    | cription | *( ): LB1   | 1999H                                                           | Unit (Resistance: $\Omega$ , capacitance: F)                                                                                        |
|------------|----------|-------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Pin number | Pin name | Pin voltage | Equivalent circuit                                              | Pin function                                                                                                                        |
| 3 (26)     | VCC2     | 4V to 13.6V |                                                                 | Source side predrive voltage supply pin.                                                                                            |
| 4 (25)     | VCC3     | 4V to 13.6V |                                                                 | Constant current control amplifier voltage supply pin.                                                                              |
| 6 (22)     | VCC1     | 4V to 6V    |                                                                 | Power supply pin for all voltage except output transistors, source predrive, and low current control amplifier.                     |
| 14 (14)    | RS       |             | VCC1<br>100μ ↓ ≥ 10k ↓ (14)(15)                                 | Reverse detector pin Forward rotation: High Reverse rotation: Low                                                                   |
| 15 (13)    | FG       |             | (13)                                                            | 1 Hall element waveform Schmitt comparator composite output                                                                         |
| 8 (20)     | UIN1     |             |                                                                 | U phase Hall element input and reverse detector U phase Schmitt                                                                     |
| 7 (21)     | UIN2     |             | 25µА                                                            | comparator input pin. Logic High indicates UIN1 > UIN2.                                                                             |
| 10 (18)    | VIN1     | 1.2V to     | 8<br>10<br>12<br>200<br>11                                      | V phase Hall element input and reverse detector V phase Schmitt                                                                     |
| 9 (19)     | VIN2     | VCC1-1V     | (12) 11 (11) (12) (25μA (21) (21) (21) (21) (21) (21) (21) (21) | comparator input pin. Logic High indicates VIN1 > VIN2.                                                                             |
| 12 (16)    | WIN1     |             | ·                                                               | W phase Hall element input and reverse detector W phase Schmitt                                                                     |
| 11 (17)    | WIN2     |             | 16 17                                                           | comparator input pin. Logic High indicates WIN1 > WIN2.                                                                             |
| 13 (15)    | VH       |             | VCC1 75μA  30k 2k 75μA  13 (15)                                 | Hall element lower side bias voltage supply pin.                                                                                    |
| 17 (11)    | S/S      | 0V to VCC1  | VCC1  75k  50k  111) 17                                         | When this pin is at 0.7V or lower, or when it is open, all circuits are inactive. When driving motor, set this pin to 2V or higher. |

Continued on next page

## Continued from preceding page

Unit (Resistance:  $\Omega$ , capacitance: F)

| Pin number | Pin name | Pin voltage | Equivalent circuit             | Pin function                                                                                                                                                                                                                 |
|------------|----------|-------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18 (8)     | SIG GND  |             | ,                              | GND pin for all circuits except output.                                                                                                                                                                                      |
| 20 (6)     | FC       |             | VCC1  20 (6) 20k \$5k          | Control loop frequency compensator pin. Connecting a capacitor between this pin and GND prevents closed loop oscillation in current limiting circuitry.                                                                      |
| 21 (5)     | VCREF    | 1.3V to 2V  | 15μ ψ 25μ ψ 15μ — VCC1         | Control reference voltage applied pin.  Determines control start voltage.                                                                                                                                                    |
| 22 (4)     | VC       | 0V to VCC1  | 22) 200 (21) (4) (5)           | Speed control voltage applied pin. V type control technique VC > VCREF: Forward VC < VCREF: Slowdown (Reverse-blocking circuit prevents reverse rotation.)                                                                   |
| 23 (2)     | WOUT     |             |                                | W-phase output.                                                                                                                                                                                                              |
| 24 (1)     | PWR GND  |             | 5 (23)                         | Output transistor GND.                                                                                                                                                                                                       |
| 1 (28)     | VOUT     |             | 3.9                            | V-phase output.                                                                                                                                                                                                              |
| 2 (27)     | UOUT     |             | 23(1)(2)                       | U-phase output.                                                                                                                                                                                                              |
| 5 (23)     | RF       |             | 3.9<br>(2, 28, 27)<br>(24) (1) | Upper side output NPN transistor collector pin (common for all 3 phases). For current detection, connect resistor between VCC3 pin and RF pin. Constant current control and current limiter works by detecting this voltage. |
| 19 (7)     | LMC      |             | VCC1 RF Sk (7)                 |                                                                                                                                                                                                                              |
| 16 (12)    | BRAKE    |             | 75k                            | Short brake pin. BRAKE: High -> Brake Low/Open -> Drive                                                                                                                                                                      |

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 1999. Specifications and information herein are subject to change without notice.