

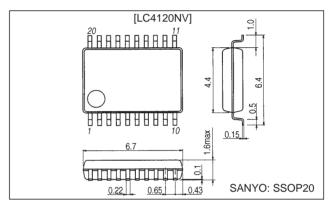
# LC4120NV

# LCD Power Supply Switching IC

### **Overview**

The LC4120NV is an LCD power supply switching IC that provides 3 input channels and 6 output channels. It is fabricated in an 80-V high-voltage CMOS process and features low power dissipation, high speed, and a low output impedance. This IC is optimal for switching the row driver LCD drive voltage in a wide range of LCD products.

## **Features**


- 3 input channels/6 output channels
- Logic voltage: 2.7 to 5.5 V
- Output voltage: 80 V (maximum)
- Output impedance:  $110\Omega$  (maximum) (When  $V_{HA} - V_{LA} = 60$  V)
- Output delay time: 0.5 µs (maximum)
- Operating temperature: -20 to 75°C
- Package: 20-pin SSOP

**Specifications** 

# Package Dimensions

unit: mm

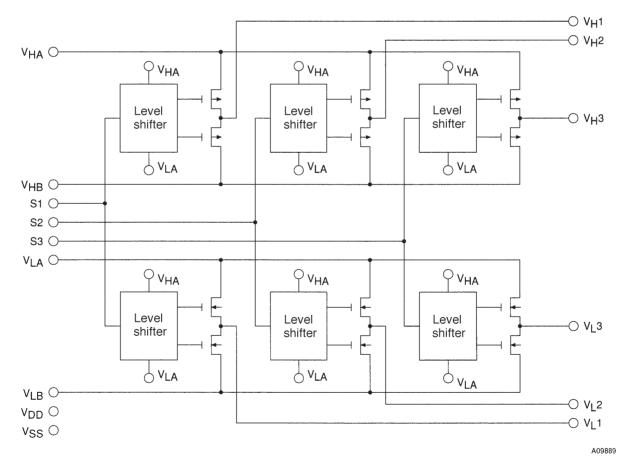
3179A-SSOP20



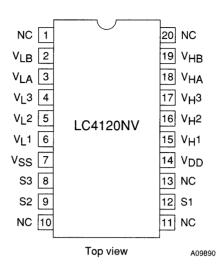
| <b>ADSOLUCE WAXIMUM NAUMOS</b> (THE IONOWING CONDUCTIONS MUST HOLD AT ALL MILES. $VHA \leq VHB \geq VHB \geq VHB \geq VHB \geq VHB$ | (The following conditions must hold at all times: $V_{HA} \ge V_{HB} > V_{DD} > V_{SS} > V_{LB} \ge V_{LA}$ ) |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|

| Parameter              | Symbol                                 | Conditions                             | Ratings                      | Unit |
|------------------------|----------------------------------------|----------------------------------------|------------------------------|------|
| Maximum supply voltage | V <sub>DD</sub> max                    | V <sub>DD</sub>                        | -0.3 to +7.0                 | V    |
|                        | V <sub>HA, B</sub> –V <sub>LA, B</sub> | V <sub>HA, B</sub> /V <sub>LA, B</sub> | -0.3 to +85                  | V    |
|                        | V <sub>HA</sub> /V <sub>HB</sub>       | V <sub>HA</sub> /V <sub>HB</sub>       | -0.3 to +45.0                | V    |
|                        | V <sub>LA</sub> /V <sub>LB</sub>       | V <sub>LA</sub> /V <sub>LB</sub>       | -40.0 to +0.3                | V    |
| Input voltage          | V <sub>IN</sub>                        | S1 to S3                               | -0.3 to V <sub>DD</sub> +0.3 | V    |
| Operating temperature  | Topr                                   |                                        | -20 to +75                   | °C   |
| Storage temperature    | Tstg                                   |                                        | -40 to +125                  | °C   |

#### **Electrical Characteristics**


## DC Characteristics at Ta = -20 to $75^{\circ}$ C, $V_{SS} = 0$ V, $V_{DD} = 2.7$ to 5.5 V unless otherwise specified

(The following conditions must hold at all times:  $V_{HA} \ge V_{HB} > V_{DD} > V_{SS} > V_{LB} \ge V_{LA}$ .)


| Parameter                 | Symbol                                 | Conditions                                                         | Ratings            |     |                     | Linit |
|---------------------------|----------------------------------------|--------------------------------------------------------------------|--------------------|-----|---------------------|-------|
| Falallelel                | Symbol                                 | Symbol                                                             | min                | typ | max                 | Unit  |
|                           | V <sub>DD</sub>                        | V <sub>DD</sub>                                                    | 2.7                | 5.0 | 5.5                 | V     |
| Operating voltage         | V <sub>HA, B</sub> -V <sub>LA, B</sub> | V <sub>HA, B</sub> , V <sub>LA, B</sub>                            | 40.0               |     | 80.0                | V     |
|                           | V <sub>HA</sub> , V <sub>HB</sub>      | V <sub>HA</sub> , V <sub>HB</sub>                                  | 20.0               |     | 42.5                | V     |
|                           | V <sub>LA</sub> , V <sub>LB</sub>      | V <sub>LA</sub> , V <sub>LB</sub>                                  | -37.5              |     | -20.0               | V     |
| Potential difference      | V <sub>HA</sub> –V <sub>HB</sub>       | V <sub>HA</sub> , V <sub>HB</sub>                                  | 0                  |     | 5.0                 | V     |
|                           | V <sub>LA</sub> –V <sub>LB</sub>       | V <sub>LA</sub> , V <sub>LB</sub>                                  | 0                  |     | 5.0                 | V     |
| Input high-level voltage  | V <sub>IH</sub>                        | S1 to S3                                                           | $V_{DD} 	imes 0.8$ |     | V <sub>DD</sub>     | V     |
| Input low-level voltage   | V <sub>IL</sub>                        | S1 to S3                                                           | 0                  |     | $V_{DD} \times 0.2$ | V     |
| Output high-level voltage | R <sub>OHA</sub>                       | $V_{OUT} = V_{HA} - 0.5$ : $V_H1$ to $V_H3 *1$                     |                    | 70  | 110                 | Ω     |
|                           | R <sub>OHB</sub>                       | $V_{OUT} = V_{HB} - 0.5$ : $V_{H}1$ to $V_{H}3 * 1$                |                    | 70  | 110                 | Ω     |
| Output low-level voltage  | R <sub>OLA</sub>                       | $V_{OUT} = V_{LA} + 0.5$ : V <sub>L</sub> 1 to V <sub>L</sub> 3 *2 |                    | 70  | 110                 | Ω     |
|                           | R <sub>OLB</sub>                       | $V_{OUT} = V_{LB} + 0.5$ : V <sub>L</sub> 1 to V <sub>L</sub> 3 *2 |                    | 70  | 110                 | Ω     |
| Current drain             | IDDOPE                                 | f = 40 kHz, Input signals operating *3                             |                    |     | 80                  | μA    |
|                           | I <sub>HOPE</sub>                      | f = 40 kHz, Input signals operating *3                             |                    |     | 600                 | μA    |
|                           | I <sub>HLEAK</sub>                     | f = 40 kHz, Input signals stopped *3                               | -10                |     | +10                 | μA    |

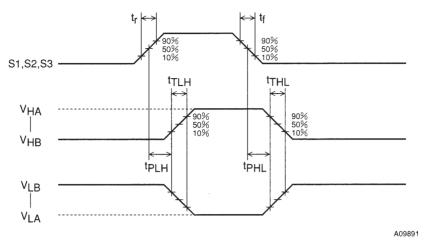
Notes: 1.  $V_{HA} - V_{LA} = 60 V$ ,  $V_{HA} - V_{HB} = 1.0 V$ 2.  $V_{HA} - V_{LA} = 60 V$ ,  $V_{LA} - V_{LB} = 1.0 V$ 3.  $V_{HA} - V_{LA} = 60 V$ ,  $V_{HA} - V_{HB} = V_{LA} - V_{LB} = 1.0 V$ 

#### **Block Diagram**



### **Pin Assignment**




#### **Pin Functions**

| Pin              | I/O | Function                    | Signal voltage                   |
|------------------|-----|-----------------------------|----------------------------------|
| V <sub>H</sub> 1 | 0   | High-voltage output 1       | V <sub>HA</sub> /V <sub>HB</sub> |
| V <sub>H</sub> 2 | 0   | High-voltage output 2       | V <sub>HA</sub> /V <sub>HB</sub> |
| V <sub>H</sub> 3 | 0   | High-voltage output 3       | V <sub>HA</sub> /V <sub>HB</sub> |
| V <sub>L</sub> 1 | 0   | Low-voltage output 1        | $V_{LA}/V_{LB}$                  |
| V <sub>L</sub> 2 | 0   | Low-voltage output 2        | $V_{LA}/V_{LB}$                  |
| V <sub>L</sub> 3 | 0   | Low-voltage output 3        | $V_{LA}/V_{LB}$                  |
| S1               | I   | Logic input 1               | V <sub>DD</sub> /V <sub>SS</sub> |
| S2               | I   | Logic input 2               | V <sub>DD</sub> /V <sub>SS</sub> |
| S3               | I   | Logic input 3               | V <sub>DD</sub> /V <sub>SS</sub> |
| V <sub>HA</sub>  |     | High-voltage power supply A |                                  |
| V <sub>HB</sub>  |     | High-voltage power supply B |                                  |
| V <sub>LA</sub>  |     | Low-voltage power supply A  |                                  |
| V <sub>LB</sub>  |     | Low-voltage power supply B  |                                  |
| V <sub>DD</sub>  |     | Logic system power supply   |                                  |
| V <sub>SS</sub>  |     | Logic system ground         |                                  |

#### **Truth Table**

| Input signal | Output          |                 |  |  |
|--------------|-----------------|-----------------|--|--|
| Sn           | V <sub>Hn</sub> | V <sub>Ln</sub> |  |  |
| Н            | V <sub>HA</sub> | V <sub>LA</sub> |  |  |
| L            | V <sub>HB</sub> | V <sub>LB</sub> |  |  |
| (n = 1, 2, 3 |                 |                 |  |  |

#### **AC Characteristics**



# Conditions 1 at Ta = -20 to 75°C, $V_{SS} = 0 V$ , $V_{DD} = 2.7$ to 5.5 V, $V_{HA} = 42.5 V$ , $V_{HB} = 37.5 V$ , $V_{LA} = -37.5 V$ , $V_{LB} = -32.5 V$ , $C_L = 50 pF$ ,unless otherwise specified

| Parameter                          | Symbol                         | Conditions | Ratings |     |     | - Unit |
|------------------------------------|--------------------------------|------------|---------|-----|-----|--------|
|                                    | Symbol                         | Conditions | min     | typ | max |        |
| Output rise time                   | t <sub>TLH</sub>               |            |         | 80  | 160 | ns     |
| Output fall time                   | t <sub>THL</sub>               |            |         | 80  | 160 | ns     |
| High-level transmission delay time | t <sub>PLH</sub>               |            |         | 200 | 500 | ns     |
| Low-level transmission delay time  | t <sub>PHL</sub>               |            |         | 200 | 500 | ns     |
| Input rise and fall times          | t <sub>r</sub> /t <sub>f</sub> |            |         |     | 30  | ns     |

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
  - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
  - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 1998. Specifications and information herein are subject to change without notice.