

CMOS Operational Amplifier with Programmable Offset Correction Function

Overview

The LC7972VA and LC7972VB are dual inverting/noninverting operational amplifier ICs that are fabricated in a CMOS process. These ICs provide a programmable offset correction function and a power saving function for use when the operational amplifier is unused, both of which can be controlled from a microprocessor interface.

Features

- High input impedance provided by fabrication in a CMOS process.
- Low power provided by fabrication in a CMOS process.
- One of two types of operational amplifier can be selected: inverting (operational amplifier 1) or noninverting (operational amplifier 2)
- Operating supply voltage: 4.9 to 5.2 V
- Package: SSOP20
- Operating temperature: Ta = -30 to $+70^{\circ}C$

• The following modes are supported. These are selected via port level settings.

LC7972VA, 7972VB

Package Dimensions

unit: mm

3179A-SSOP20

Port	Level	Function
OP1ON	L	Operational amplifier 1: Operation stopped (low-power mode)
	Н	Operational amplifier 1: Normal operation (OP2ON must be low in this mode.)
ODOON	L	Operational amplifier 2: Operation stopped (low-power mode)
OP2ON	Н	Operational amplifier 2: Normal operation (OP1ON must be low in this mode.)
OFST1	L	Operational amplifier 1: Offset mode (inverting input = V _{SS})
	Н	Operational amplifier 1: Operating mode (inverting input = normal input)
OFST2	L	Operational amplifier 2: Offset mode (noninverting input = V_{SS})
	Н	Operational amplifier 2: Operating mode (noninverting input = normal input)
CLKC	L	Operational amplifier power supply clock: Internal clock

No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

Anyone purchasing any products described or contained herein for an above-mentioned use shall:

- ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
- ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 1997. Specifications and information herein are subject to change without notice.

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Pin Assignment

A07355

Pin Functions

Pin		Function		
No.	Symbol	Function		
1	DV _{DD}	Digital system power supply. Normally connected to +5 V.		
2	EXT	Must be tied low.		
3	CLKC	Must be tied low.		
4	OP2ON	Operational amplifier 2 operation control		
5	OFST2	Operational amplifier 2 mode control		
6	OP10N	Operational amplifier 1 operation control		
7	OFST1	Operational amplifier 1 mode control		
8	TGO	Operational amplifier 1 VSS/small voltage output		
9	OP1I	Operational amplifier 1 input		
10	OP10	Operational amplifier 1 output		
11	OP2O	Operational amplifier 2 output		
12	OP2I	Operational amplifier 2 input		
13	TGI	Small voltage input common to operational amplifiers 1 and 2		
14	AV _{SS} M	Operational amplifier power supply minus voltage generation		
15	AV _{DD}	Analog system power supply. Normally connected to +5 V.		
16	AV _{SS} P	Operational amplifier power supply external Zener diode connection		
17	AV _{SS}	Analog system ground. Must be connected to 0 V.		
18	CUP2	Operational amplifier power supply external capacitor connection 2		
19	CUP1	Operational amplifier power supply external capacitor connection 1		
20	DVSS	Digital system ground. Must be connected to 0 V.		

System Block Diagram and Sample Application

A circuit that amplifies very small voltages around the V_{SS} level can be constructed by adding the peripheral circuits shown in the figure below.

Specifications Absolute Maximum Ratings at Ta = 25°C, V_{SS} = 0 V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage V _{DD} max V _{DD}		V _{DD}	-0.3 to +7.0	V
Dutput voltage V _O OP10, OP20, TGO		OP10, OP20, TGO	-0.3 to V _{DD} +0.3	V
Input voltage	V _I 1	OP1ON, OFST1, OP2ON, OFST2, EXT, CLKC, CUP2, CUP1, AV _{SS} P, OP1I, OP2I, TGI	–0.3 to V _{DD} +0.3	V
	V _l 2	AV _{SS} M	-3 to +0.3	V
Peak output current I _{OP} OP10, OP20, TGO		OP10, OP20, TGO	-1 to +1	mA
Average output current	I _{OA}	OP10, OP20, TGO : The current per pin	-1 to +1	mA
Allowable power dissipation	Pd max	SSOP20 : Ta = -30 to +70°C	100	mW
Operating temperature	Topr		-30 to +70	°C
Storage temperature	Tstg		-55 to +125	°C

Allowable Operating Ranges at Ta = -30 to $+70^{\circ}$ C, $V_{SS} = 0$ V, $V_{DD} = 4.9$ to 5.2 V, unless otherwise specified

Deremeter	Symbol	Conditions	Ratings			Linit
Falameter			min	typ	max	
Supply voltage	V _{DD}	V _{DD}	4.9		5.2	V
Input high-level voltage	V _{IH}	OP1ON, OFST1, OP2ON, OFST2	0.7 V _{DD}		V _{DD}	V
	V _{IL} 1	OP1ON, OFST1, OP2ON, OFST2, CLKC	V _{SS}		0.3 V _{DD}	V
Input low-level voltage	V _{IL} 2	EXT	V _{SS}		0.3 V _{DD}	V
Common-mode input voltage	V _{IC}		0		4.2	V
Voltage drop	D _V	$AV_{SS}M$: Zener diode = 5.1 V (X rank specified)		-0.2		V

Electrical Characteristics at Ta = -30 to +70 $^{\circ}C,$ V_{SS} = 0 V, V_{DD} = 4.9 to 5.2 V, unless otherwise specified

Deremeter	Symbol	Conditions	Ratings			Linit	
Parameter			min	typ	max	Unit	
	I _{IH} 1	OP1ON, OFST1, OP2ON, OFST2 : $V_{IN} = V_{DD}$			1.0	μA	
Input nign-level current	I _{IH} 2	TGI: $V_{IN} = V_{DD}$, with the built-in TG off.			1.0	μA	
Input low-level current	I _{IL} 1	OP1ON, OFST1, OP2ON, OFST2, EXT, CLKC : $V_{IN} = V_{SS}$	-1.0			μA	
	I _{IL} 2	TGI: $V_{IN} = V_{SS}$, with the built-in TG off.	-1.0			μA	
Output high-level voltage	V _{OH}	OP1O, OP2O : I _{OH} = −3 μA	V _{DD} - 0.5			V	
Output low-level voltage	V _{OL}	OP1O, OP2O : Ι _{OL} = 3 μA			0.5	V	
Operational amplifier 1 gain-related resistance	Rtg + 2Rs	TGO, TGI	500	700	900	Ω	
Operational amplifier 1 gain-related resistance difference	Rx–Ry	TGO, TGI: Offset mode: Rx = Rtg + 2Rs Operating mode: Ry = Rtg + 2Rs			80	Ω	
Current drain							
Operating	IDDOP	V _{DD} ; Using the internal clock, with the operational amplifier 1 circuit operating.		700	900	μA	
Standby	IDDST	V _{DD} ; Both operational amplifiers 1 and 2 stopped.		0.05	10	μA	

Operational Amplifier Characteristics at Ta = $25^{\circ}C \pm 2^{\circ}C$, $V_{SS} = 0 V$, $V_{DD} = 4.9$ to 5.2 V, unless otherwise specified

Deremeter	Symbol	Conditions		Lloit		
Falameter			min	typ	max	Unit
		OP1I, OP2I : LC7972VA		5	10.5	mV
Input offset voltage	VIO	LC7972VB		5	15	mV
Supply voltage rejection ratio	P _{SRR}	1 kHz		60		dB
Common-mode rejection ratio	C _{MRR}			60		dB
Open-loop voltage gain	A _O			80		dB
0-dB bandwidth	f _T			90		kHz
Maximum output voltage	Vo	OP10, OP20 : $R_L \ge 100 \text{ k}\Omega$		V _{DD} – 0.5		V
Current drain	I _{CC}	For the operational amplifier 1 circuit		100		μA
Settling time	T _{SET}	OP10, OP20		900		μs