$\square \rightarrow$ LC89975M

PAL-Format Delay Line

Preliminary

Overview

The LC89975M is a lower-cost PAL-Format CCD delay line based on the LC89970M, with the sizes of chip and package miniaturized and the external parts count reduced.

Features

- 5 V single-voltage power supply
- On-chip $3 \times$ PLL circuit for 3 •fsc operation from an fsc (4.43 MHz) input
- Supports PAL/GBI and 4.43 NTSC systems, selected by a control pin input
- Includes an on-chip comb filter for chrominance signal crosstalk exclusion. This adjustment-free circuit provides high-precision comb characteristics.
- Peripheral circuits included on chip to allow operation with minimal external circuits.
- Positive-phase signal input, positive phase signal output (luminance signal)

Functions

- CCD shift register (for chrominance and luminance signals)
- CCD drive circuit
- Circuit for switching the number of CCD stages
- CCD signal addition circuit
- Auto-bias circuit
- Sync tip clamping circuit (luminance signal)
- Center bias circuit (chrominance signal)
- Sample-and-hold circuit
- PLL $3 \times$ circuit
- 3 •fsc clock output circuit
- RD voltage generation step-up circuit

Package Dimensions

unit: mm
3111-MFP14S

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V_{DD}		-0.3 to +6.0	V
Allowable power dissipation	Pdmax		250	mW
Operating temperature	Topr		-10 to +60	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

Recommended Conditions at $\mathbf{T a}=\mathbf{2 5}^{\boldsymbol{}} \mathbf{C}$

Parameter	Symbol	Conditions	min	typ	max
Unit					
Supply voltage	V_{DD}		4.75	5.00	5.25
Clock input amplitude	$\mathrm{V}_{\text {CLK }}$		300	500	1000
Clock frequency	$\mathrm{F}_{\mathrm{CLK}}$	Sine wave	-	$\mathrm{mVp}-\mathrm{p}$	
Chrominance signal input amplitude	$\mathrm{V}_{\text {IN-C }}$		-	-	MHz
Luminance signal input amplitude	$\mathrm{V}_{\text {IN-Y }}$		-	350	500

Pin Assignment

Block Diagram

Control Pin

CONT	Mode (typical example)	Chrominance signal delay (number of CCD stages)	Luminance signal delay (number of CCD stages)
Low	PAL/GBI	$2 \mathrm{H}(1705)+0 \mathrm{H}(2.5)$	$1 \mathrm{H}(849)$
High	4.43 NTSC	$1 \mathrm{H}(847)+0 \mathrm{H}(2.5)$	$1 \mathrm{H}(843)$

Switching levels

Low/High	Symbol	min	typ	\max	Unit
Low	V_{L}	-0.3	0.0	+0.5	V
High	V_{H}	2.0	5.0	6.0	V

Note: Since a pull-down resistor of about $70 \mathrm{k} \Omega$ is built in the control pin circuit, it will remain fixed at the low level if left open.

3fsc Pin

This pin outputs the $3 \cdot f$ fsc clock signal generated by the PLL $3 \times$ circuit.

Electrical Characteristics at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{CLK}}=4.43361875 \mathrm{MHz}, \mathrm{V}_{\mathrm{CLK}}=500 \mathrm{mVp}-\mathrm{p}$

Parameter	Symbol	Test conditions	Switch states			min	typ	max	Unit
			SW1	SW2	SW3				
Power-supply current	IDD-1	1	a	a	b	27	32	37	mA
	IDD-2		b	a	b				

Chrominance System Characteristics (with no signal applied to the Y-IN pin)

Parameter	Symbol	Test conditions	Switch states			min	typ	max	Unit
			SW1	SW2	SW3				
Pin voltage (input)	$\mathrm{V}_{\text {INC-1 }}$	2	a	a	b	2.2	2.7	3.2	V
	$\mathrm{V}_{\text {INC-2 }}$		b	a	b				
Pin voltage (output)	$\mathrm{V}_{\text {OUTC-1 }}$		a	a	b	1.5	2.0	2.5	V
	$\mathrm{V}_{\text {OUTC-2 }}$		b	a	b				
Voltage gain	$\mathrm{G}_{\mathrm{VC}-1}$	3	a	a	b	0	2	4	dB
	$\mathrm{G}_{\mathrm{Vc}-2}$		b	a	b				
Comb depth	$\mathrm{C}_{\mathrm{D}-1}$	4	a	a	b	-	-40	-35	dB
	$\mathrm{C}_{\mathrm{D}-2}$		b	a	b				
Linearity	$\mathrm{L}_{\mathrm{NC}-1}$	5	a	a	b	-0.3	0.0	+0.3	dB
	$\mathrm{L}_{\text {NC-2 }}$		b	a	b				
Clock leakage (3.fsc)	$\mathrm{L}_{\text {CK3C-1 }}$	6	a	a	b	-	10	50	mVrms
	$\mathrm{L}_{\text {СK3C-2 }}$		b	a	b				
Clock leakage fsc)	L ${ }_{\text {CK1C-1 }}$		a	a	b	-	0.5	1.5	mVrms
	L ${ }_{\text {CK1C-2 }}$		b	a	b				
Noise	$\mathrm{N}_{\mathrm{C}-1}$	7	a	a	b	-	0.5	2.0	mVrms
	$\mathrm{N}_{\mathrm{C}-2}$		b	a	b				
Output impedance	$\mathrm{Z}_{\mathrm{OC}-1}$	8	a	a	a, b	200	350	500	Ω
	$\mathrm{Z}_{\mathrm{OC}-2}$		b	a	a, b				
OH delay time	$\mathrm{T}_{\text {DC-1 }}$	9	a	a	b	-	245	-	ns
	TDC-2		b	a	b				

Luminance System Characteristics (with no signals applied to the C-IN1 and C-IN2 pins)

Parameter	Symbol	Test conditions	Switch states			min	typ	max	Unit
			SW1	SW2	SW3				
Pin voltage (input)	$\mathrm{V}_{\text {INY-1 }}$	10	a	a	b	1.7	2.2	2.7	V
	$\mathrm{V}_{\text {INY-2 }}$		b	a	b				
Pin voltage (output)	$\mathrm{V}_{\text {OUTY-1 }}$		a	a	b	0.8	1.3	1.8	V
	$\mathrm{V}_{\text {OUTY-2 }}$		b	a	b				
Voltage gain	$\mathrm{G}_{\mathrm{VY}-1}$	11	a	a	b	0	2	4	dB
	$\mathrm{G}_{\mathrm{VY}-2}$		b	a	b				
Frequency response	$\mathrm{G}_{\mathrm{FY}-1}$	12	a	b	b	-2	0	2	dB
	$\mathrm{G}_{\mathrm{FY}-2}$		b	b	b				
Differential gain	$\mathrm{D}_{\mathrm{GY}-1}$	13	a	a	b	0	5	7	\%
	$\mathrm{D}_{\mathrm{GY}-2}$		b	a	b				
Differential phase	$\mathrm{D}_{\text {PY-1 }}$		a	a	b	0	5	7	deg
	$\mathrm{D}_{\text {PY-2 }}$		b	a	b				
Linearity	$\mathrm{L}_{\mathrm{SY}-1}$	14	a	a	b	37	40	43	\%
	$L_{\text {SY-2 }}$		b	a	b				
Clock leakage (3.fsc)	$\mathrm{L}_{\text {CK3Y-1 }}$	15	a	a	b	-	10	50	mVrms
	$\mathrm{L}_{\text {СКЗ }}$		b	a	b				
Clock leakage (fsc)	$L_{\text {CK1Y-1 }}$		a	a	b	-	0.5	1.5	mVrms
	$\mathrm{L}_{\text {CK1Y-2 }}$		b	a	b				
Noise	$\mathrm{N}_{\mathrm{Y}-1}$	16	a	a	b	-	0.5	2.0	mVrms
	$\mathrm{N}_{\mathrm{Y}-2}$		b	a	b				
Output impedance	$\mathrm{Z}_{\mathrm{OY}-1}$	17	a	a	c, b	250	400	550	Ω
	$\mathrm{Z}_{\mathrm{OY}-2}$		b	a	c, b				
Delay time	TDY-1	18	a	a	b	-	63.88	-	$\mu \mathrm{s}$
	T DY-2		b	a	b	-	63.43	-	

LC89975M

Test Conditions

1. Power-supply current with no input signal applied
2. Pin output voltage with no input signal applied (center bias voltage)
3. Measure the C-OUT output when $350-\mathrm{mVp}$-p sine wave signals are input to $\mathrm{C}-\mathrm{IN} 1$ and $\mathrm{C}-\mathrm{IN} 2$.

$$
\mathrm{G}_{\mathrm{VC}}=20 \log \frac{\text { C-OUT output }[\mathrm{mVp}-\mathrm{p}]}{350[\mathrm{mVp}-\mathrm{p}]}[\mathrm{dB}]
$$

Measured frequencies

$$
\begin{array}{lll}
\mathrm{G}_{\mathrm{VC}-1} & 4.429662 \mathrm{MHz} & \text { (PAL/GBI) } \\
\mathrm{G}_{\mathrm{VC}-2} & 4.425694 \mathrm{MHz} & (4.43 \mathrm{NTSC})
\end{array}
$$

4. Measure the comb depth from the C-OUT output when $350-\mathrm{mV}$ p-p sine wave signals of frequency fa are input to CIN1 and C-IN2 and when signals of frequency fb are input.

$$
C_{D}=20 \log \frac{\text { The C-OUT output for an fb input }[\mathrm{mVp}-\mathrm{p}]}{\text { The C-OUT output for an fa input }[\mathrm{mVp}-\mathrm{p}]}[\mathrm{dB}]
$$

Measured frequencies
$\mathrm{C}_{\mathrm{D}-1}$
$\mathrm{C}_{\mathrm{D}-2}$
fa
4.429662 MHz $\quad 4.425756 \mathrm{MHz}$
4.425694 MHz
(PAL/GBI)
(4.43 NTSC)

5. Measure the C-OUT output when $200-\mathrm{mV}$ p-p sine wave signals are input to C-IN1 and C-IN2 and when $500-\mathrm{mV}$-p sine wave signals are input and calculate the gain difference.

$$
\mathrm{L}_{\mathrm{NC}}=20 \log \left(\frac{\text { Output for a } 500-\mathrm{mVp}-\mathrm{p} \text { input }[\mathrm{mVp}-\mathrm{p}]}{500[\mathrm{mVp}-\mathrm{p}]}, \frac{\text { Output for a 200-mVp-p input }[\mathrm{mVp}-\mathrm{p}]}{200[\mathrm{mVp}-\mathrm{p}]}\right)[\mathrm{dB}]
$$

Measured frequencies

$\mathrm{L}_{\mathrm{NC}-1}$	4.429662 MHz	(PAL/GBI)
$\mathrm{L}_{\mathrm{NC}-2}$	4.425694 MHz	(4.43 NTSC)

6. Measure the $3 \cdot \mathrm{fsc}(13.3 \mathrm{MHz})$ and $\mathrm{fsc}(4.43 \mathrm{MHz})$ components in the C-OUT output with no input signal applied.
7. Measure the noise in the C-OUT output with no input signal applied.

Set up the noise meter with a $200-\mathrm{kHz}$ high-pass filter and a $5-\mathrm{MHz}$ low-pass filter.
8. Let V1 be the C-OUT output when $350-\mathrm{mV}$ p-p sine wave signals are input to C-IN1 and C-IN2 with SW3 in the a position, and V2 be the C-OUT output with SW3 in the b position.

$$
\mathrm{Z}_{\mathrm{OC}}=\frac{\mathrm{V} 2[\mathrm{mVp}-\mathrm{p}]-\mathrm{V} 1[\mathrm{mVp}-\mathrm{p}]}{\mathrm{V} 1[\mathrm{mVp}-\mathrm{p}]} \times 500[\Omega]
$$

Measured frequencies

$$
\begin{array}{lll}
\mathrm{Z}_{\mathrm{OC}-1} & 4.429662 \mathrm{MHz} & (\mathrm{PAL} / \mathrm{GBI}) \\
\mathrm{Z}_{\mathrm{OC}-2} & 4.425694 \mathrm{MHz} & (4.43 \mathrm{NTSC})
\end{array}
$$

9. The C-OUT output delay time with respect to a C-IN1 input (the 2.5 -bit CCD delay)
10. The pin output voltage when no input signal is applied (the clamp voltage)
11. Measure the Y-OUT output when a $200-\mathrm{kHz} 400-\mathrm{mV}$ p-p sine wave is input to $\mathrm{Y}-\mathrm{IN}$.

$$
\mathrm{G}_{\mathrm{VY}}=20 \log \frac{\text { Y-OUT output [mVp-p] }}{400[\mathrm{mVp}-\mathrm{p}]}[\mathrm{dB}]
$$

12. Measure the Y-OUT output when a $200-\mathrm{kHz} 200-\mathrm{mVp}-\mathrm{p}$ sine wave is input to $\mathrm{Y}-\mathrm{IN}$ and when $3.3-\mathrm{MHz} 200-\mathrm{mVp}-\mathrm{p}$ sine wave is input.

$$
\mathrm{G}_{\mathrm{FY}}=20 \log \frac{\text { The Y-OUT output for a 3.3-MHz input }[\mathrm{mVp}-\mathrm{p}]}{\text { The Y-OUT output for a } 200-\mathrm{kHz} \text { input }[\mathrm{mVp}-\mathrm{p}]}[\mathrm{dB}]
$$

Adjust Vbias to set the bias to the clamp level plus 250 mV .
13. Apply a 5-step waveform (see the figure) to Y-IN and measure the Y-OUT output differential gain and differential phase with a vectorscope.

14. Apply a 5-step waveform (see the figure) to Y-IN and measure the Y-OUT output luminance signal level (Y) and sync level (S).

$$
\mathrm{L}_{\mathrm{SY}}=\frac{\mathrm{S}[\mathrm{mV}]}{\mathrm{Y}[\mathrm{mV}]} \times 100[\%]
$$

15. Measure the $3 \cdot \mathrm{fsc}(13.3 \mathrm{MHz})$ and $\mathrm{fsc}(4.43 \mathrm{MHz})$ components in the Y-OUT output with no input signal applied.
16. Measure the noise in the Y-OUT output with no input signal applied.

Set up the noise meter with a $200-\mathrm{kHz}$ high-pass filter, a $5-\mathrm{MHz}$ low-pass filter, and a $4.43-\mathrm{MHz}$ trap filter.
17. Let V1 be the Y-OUT output when a $200-\mathrm{kHz} 400-\mathrm{mV}$ p-p sine wave signal is input to Y-IN and with SW3 in the c position, and V2 be the Y-OUT output with SW3 in the b position.

$$
\mathrm{Z}_{\mathrm{OY}}=\frac{\mathrm{V} 2[\mathrm{mVp}-\mathrm{p}]-\mathrm{V} 1[\mathrm{mVp}-\mathrm{p}]}{\mathrm{V} 1[\mathrm{mVp}-\mathrm{p}]} \times 500[\Omega]
$$

18. The Y-OUT output delay time with respect to inputs to Y-IN.

Test Circuit

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 1996. Specifications and information herein are subject to change without notice.

