

LH28F320SKTD 32M Flash Memory

Migration from LH28F032SUTD to LH28F320SKTD

Phil Lin, Flash Applications Engineer

INTRODUCTION

To convert a LH28F032SUTD to a LH28F320SKTD, the hardware and software changes are as follows.

HARDWARE COMPATIBILITY

Figure 1 shows the pinout. Pin 1 becomes NC (No Connect) from $3/\overline{5}$. Pin 53 becomes STS (Status) from RY/BY.

The NC can be either driven or floated. The STS can be configured in two different modes: level mode (default mode) or pulse mode. In level mode, it acts as a RY/BY pin. For pulse mode, please refer to Table 12 of the STS Configuration Command in the data sheets for further information.

Table 1 shows a comparison between LH28F032SUTD and LH28F320SKTD. The LH28F320SKTD is available in 3.3 V V_{PP} design. However, designers need to be aware that the size of the page buffer is smaller than what is available in the LH28F032SUTD model.

LH28F320S LH	KTD 28F032SUT	ſD	LH28 LH28F032SUTD	F320SKTD
NC	3/5 🗖	1•		WP
BE1L	BE1L	2	55 🗌 WE	WE
BE1H	BE1H	3	54 🗌 🖸	ŌĒ
A ₂₀	A ₂₀ []	4	53 🗌 RY/BY	STS
A ₁₉		5	52 🗌 DQ ₁₅	DQ ₁₅
A ₁₈		6	51 🗌 DQ ₇	DQ ₇
A ₁₇		7	50 🗌 DQ ₁₄	DQ ₁₄
A ₁₆	A ₁₆	8	49 🗌 DQ ₆	DQ ₆
V _{CC}	V _{cc} []	9	48 🗌 GND	GND
A ₁₅	A ₁₅	10	47 🗌 DQ ₁₃	DQ ₁₃
A ₁₄	A ₁₄	11	46 🗌 DQ ₅	DQ ₅
A ₁₃	A ₁₃	12	45 🗌 DQ ₁₂	DQ ₁₂
A ₁₂	A ₁₂	13	44 🗌 DQ4	DQ ₄
BE ₀	\overline{BE}_0	14	43 🗌 V _{CC}	V _{CC}
V _{PP}	V _{PP}	15	42 🗌 GND	GND
RP	RP 🗌	16	41 🗖 DQ ₁₁	DQ ₁₁
A ₁₁	A ₁₁	17	40 🗌 DQ ₃	DQ ₃
A ₁₀	A ₁₀	18	39 🗌 DQ ₁₀	DQ ₁₀
A ₉	A ₉ 🗌	19	38 🗌 DQ ₂	DQ ₂
A ₈	A ₈ 🗆 3	20	37 🗌 V _{CC}	V _{CC}
GND	GND 🗌	21	36 🗌 DQ ₉	DQ ₉
A ₇	A ₇ 🗖 2	22	35 🗌 DQ1	DQ ₁
A ₆	A ₆ []	23	34 🗌 DQ ₈	DQ ₈
A ₅	A ₅ [] 2	24	33 🗌 DQ ₀	DQ ₀
A ₄	A ₄ [] :	25	32 🗌 A ₀	A ₀
A ₃	A ₃ [] 2	26	31 BYTE	BYTE
A ₂	$A_2 \square 2$	27	30 🗌 NC	NC
A ₁		28	29 🗍 NC	NC
				FL17-1

Figure 1. Pinout Comparison of the LH28F032SUTD versus LH28F320SKTD

PARAMETER	LH28F032SUTD	LH28F320SKTD
Supply Voltage V _{CC} /V _{PP}	3.3 V/5 V, 5 V/5 V	3.3 V/3.3 V, 3.3 V/5 V, 5 V/5 V
Configuration	x8/x16	x8/x16
Package	56 TSOP	56 TSOP
Block Size	32 × 64KB × 2 banks	32 × 64KB × 2 banks
Block Locking Feature	Any block	Any block
Buffer Size	256 bytes × 2	32 bytes × 2
CFI	No	Yes

 Table 1. Comparison of LH28F032SUTD and LH28F320SKTD

SOFTWARE COMPATIBILITY

Table 2 shows the differences between the manufacture and device IDs. If any conversion takes place, the device ID has to be changed.

Table 2. Comparison of IDs

DEVICE	MANUFACTURE ID	DEVICE ID	
LH28F032SUTD	B0	88	
LH28F320SKTD	B0	D0	

LH28F032SU and LH28F320SK have two command sets: Compatible Command set and Enhanced Command set.

The Compatible Command performs the basic operations such as Array Read, Word/Byte Write, Block Erase and Suspend etc. While the Enhanced Command performs the enhanced features offered by the SK device. Table 3 and Table 4 show the compatible command set and enhanced command set, respectively.

Furthermore, the SK supports CFI (Common Flash Interface). The CFI is used to standardize the software compatibility and contains the block size, density, command set information, etc.

For detailed information on software compatibility and CFI, please refer to the data sheets for each part.

Table 3.	Compatible	Command Set
----------	------------	-------------

COMPATIBLE COMMAND CODE	LH28F032SU	LH28F320SK
Read Array	FFH	FFH
Intelligent Identifier	90H	90H
Read Compatible Status Register	70H	70H
Clear Status Register	50H	50H
Word/Byte Write	40H	40H
Alternate Word/Byte Write	10H	10H
Erase Suspend/Resume	B0H/D0H	B0H/D0H
Block Erase/Confirm	20H/D0H	20H/D0H

Table 4 shows the differences of the Enhanced Command Functions between the two devices. Because of those differences, the status register bits checking differs as well. The LH28F032SU has three registers, Compatible Status Register (CSR), Global Status Register (GSR), Block Status Register (BSR). However LH28F320SK has only two: the Status Register (SR) and Extended Status Register (XSR). Table 5 shows the status register bit cross references.

Table 4. Enhanced Command Set

ENHANCED COMMAND FUNCTION	LH28F032SU	LH28F320SK
Lock Block/Confirm	77H/D0H	
Set Block Lock-Bit/Confirm		60H/01H
Clear Block Lock-Bits/ Confirm		60H/D0H
Single Load to Page Buffer	74H	
Sequential Load to Page Buffer	E0H	E8H
Page Buffer Write to Flash	0CH	D0H
Byte Write Suspend/ Resume		B0H/D0H
Erase All Unlocked Blocks/Confirm	A7H/D0H	
Full Chip Erase/Confirm		30H/D0H
Device Configuration	96H	
STS Configuration		B8H
Read Query		98H
Read Extended Status Register	71H	
Read Page Buffer	75H	
Page Buffer Swap	72H	
Two-Byte Program	FBH	
Upload Status Bits	97H	
Upload Device Information	99H	
Sleep	F0H	
Abort	80H	

STATUS	LH28F320SK SR/XSR	LH28F032SU CSR	LH28F032SU GSR	LH28F032SU BSR
Write State Machine Status	SR.7	CSR.7	GSR.7	
Erase-Suspend Status	SR.6	CSR.6		
Program-Suspend Status	SR.2			
Operation Suspend Status	SR.6 or SR.2		GSR.6	
Erase Status	SR.5	CSR.5		
Data-Write Status	SR.4	CSR.4		
Device Operation Status	SR.5 or SR.4		GSR.5	
Improper Command Sequence	SR.5 and SR.4	CSR.5 and CSR.4		
Device Sleep Status	N/A		GSR.4	
Block Status	SR.1			BSR.7
Block Lock Status	BSR.0			BSR.6
Block Operation Status	BSR.1, SR.5 or SR.4			BSR.5
Block Operation Abort Status	N/A			BSR.4
Queue Status	N/A (XSR.7)		GSR.3	BSR.3
V _{PP} Status	SR.3	CSR.3		BSR.2
Page Buffer Available Status	XSR.7		GSR.2	
Page Buffer Status	N/A		GSR.1	
Page Buffer Select Status	N/A		GSR.0	
Reserved	XSR.0-6, BSR.2-7, SR.0	CSR.2-0		BSR.0

Table 5. Comparison of Status Registers

AC/DC SPECIFICATIONS

The comparison of electrical specifications between LH28F032SU and LH28F320SK is shown in Table 6. Please note that the power consumption of these

devices varies depending on which operation modes are in use. However, the programming and erase times have been greatly improved in the SK model. Please refer to the product data sheets for further information.

PARAMETER	LH28F032SU		LH28F320SK			
Supply Voltage (V _{CC} /V _{PP})		5 V/5 V	3.3 V/5 V	5 V/5 V	3.3 V/5 V	3.3 V/3.3 V
Read Current (MAX.)	I _{CC} R	60 mA	35 mA	50 mA	25 mA	25 mA
Write Current (MAX)	I _{PP} W	60 mA	60 mA	80 mA	80 mA	80 mA
Write Current (MAX.)	I _{CC} W	35 mA	12 mA	35 mA	17 mA	17 mA
Eropo Current (MAX)	I _{PP} E	40 mA	40 mA	40 mA	40 mA	40 mA
Erase Current (MAX.)	I _{CC} E	25 mA	12 mA	30 mA	17 mA	17 mA
Standby Current (MAX.)	I _{CC} S	40 µA	30 µA	100 µA	100 µA	100 µA
Deep Power Down Current (MAX.)	I _{PP} D	10 µA	10 µA	5 µA	5 µA	5 µA
Deep Power Down Current (MAX.)	I _{CC} D	16 µA	16 µA	15 µA	15 µA	15 µA
Address Access Time (MAX.)		70 ns	120 ns	70 ns	100 ns	100 ns
OE Access Time (MAX.)		30 ns	45 ns	35 ns	45 ns	45 ns
Byte Write Time (TYP.)		8 µs(6 µs)	12 µs (9 µs)	9.24 µs	12.95 µs	19.51 µs
Byte Write time with page buffer (TYP.)		6.5 µs (5.5 µs)	9.5 µs (6.5 µs)	2 µs	2.7 µs	5.66 µs
Block Write Time (TYP.)		0.5 s	0.8 s	0.31 s	0.43 s	0.72 s
Block Erase Time (TYP.)		0.7 s	0.9 s	0.34 s	0.41 s	0.55 s
Access Time at 2.7 V at (MAX.)		160 ns			120 ns	

Table 6. Comparison of AD/CD Characteristics

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (360) 834-2500 Fax: (360) 834-8903 http://www.sharpsma.com

©1999 by SHARP Corporation

EUROPE

SHARP Microelectronics Europe Sonninstraße 3 20097 Hamburg, Germany Phone: (49) 40 2376-2286 Fax: (49) 40 2376-2232 http://www.sharpsme.com

ASIA

SHARP Corporation Integrated Circuits Group 2613-1 Ichinomoto-Cho Tenri-City, Nara, 632, Japan Phone: +81-743-65-1321 Fax: +81-743-65-1532 http://www.sharp.co.jp