LM119JAN

SNOSAO2A - JULY 2005 - REVISED SEPTEMBER 2010

www.ti.com

LM119JAN High Speed Dual Comparator

Check for Samples: LM119JAN

FEATURES

- Two independent comparators
- Operates from a single 5V supply
- Typically 80 ns response time at ±15V
- · Minimum fan-out of 2 each side

- Maximum input current of 1 μA over temperature
- Inputs and outputs can be isolated from system ground
- · High common mode slew rate

DESCRIPTION

The LM119 is a precision high speed dual comparator fabricated on a single monolithic chip. It is designed to operate over a wide range of supply voltages down to a single 5V logic supply and ground. Further, it has higher gain and lower input currents than devices such as the LM710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA.

Although designed primarily for applications requiring operation from digital logic supplies, the LM119 is fully specified for power supplies up to ±15V. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices such as the LM711.

Connection Diagram

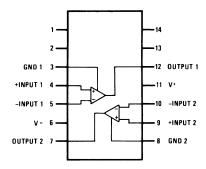
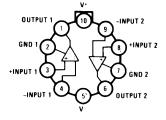
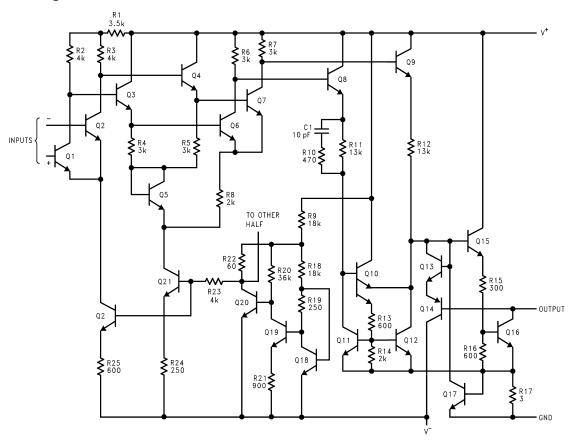



Figure 1. Dual-In-Line Package (Top View)

Case is connected to pin 5 (V-)


Figure 2. Metal Can Package (Top View)

A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Schematic Diagram

*Do not operate the LM119 with more than 16V between GND and V+

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

www.ti.com

SNOSAO2A - JULY 2005-REVISED SEPTEMBER 2010

Absolute Maximum Ratings (1)

Total Supply Voltage	36V
Output to Negative Supply Voltage	36V
Ground to Negative Supply Voltage	25V
Ground to Positive Supply Voltage	18V
Differential Input Voltage	±5V
Input Voltage (2)	±15V
Power Dissipation (3)	500 mW
Output Short Circuit Duration	10 sec
Storage Temperature Range	-65°C ≤ T _A ≤ 150°C
Operating Ambient Temperature Range	-55°C ≤ T _A ≤ 125°C
Maximum Junction Temperature (T _J)	150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Thermal Resistance	
θ_{JA}	
H Package (Still Air)	162°C/W
H Package (500LF/Min Air flow)	88°C/W
J Package (Still Air)	94°C/W
J Package (500LF/Min Air flow)	52°C/W
θ _{JC}	
H Package	31°C/W
J Package	11°C/W
Package Weight	
H Package	TBD
J Package	TBD
ESD rating ⁽⁴⁾	800V

⁽¹⁾ Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

For supply voltages less than ±15V the absolute maximum input voltage is equal to the supply voltage.

Table 1. Quality Conformance InspectionMil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp °C
1	Static tests at	25
2	Static tests at	125
3	Static tests at	-55
4	Dynamic tests at	25
5	Dynamic tests at	125
6	Dynamic tests at	-55
7	Functional tests at	25
8A	Functional tests at	125
8B	Functional tests at	-55
9	Switching tests at	25
10	Switching tests at	125
11	Switching tests at	-55
12	Settling time at	25
13	Settling time at	125

The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. Human Body model, 1.5K Ω in series with 100pF.

TEXAS INSTRUMENTS

SNOSAO2A – JULY 2005–REVISED SEPTEMBER 2010

www.ti.com

Table 1. Quality Conformance InspectionMil-Std-883, Method 5005 - Group A

(continued)

Subgroup	Description	Temp °C
14	Settling time at	-55

Submit Documentation Feedback

NSTRUMENTS

Electrical Characteristics DC Parameters

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V _{IO}	Input Offset Voltage	$+V_{CC} = 15V, -V_{CC} = -15V,$		-4.0	4.0	mV	1
		$V_{CM} = 0V, R_S = 50\Omega$		-7.0	7.0	mV	2, 3
		$+V_{CC} = 27V, -V_{CC} = -3V,$		-4.0	4.0	mV	1
		$V_{CM} = -12V, R_S = 50\Omega$		-7.0	7.0	mV	2, 3
		$+V_{CC} = 3V, -V_{CC} = -27V,$		-4.0	4.0	mV	1
		$V_{CM} = 12V, R_S = 50\Omega$		-7.0	7.0	mV	2, 3
		$+V_{CC} = 2.5V, -V_{CC} = -2.5V,$		-4.0	4.0	mV	1
		$V_{CM} = 2.5V, R_S = 50\Omega$		-7.0	7.0	mV	2, 3
I _{IO}	Input Offset Current	$+V_{CC} = 15V, -V_{CC} = -15V,$		-75	+75	nA	1, 2
		$V_{CM} = 0V$		-100	+100	nA	3
		$+V_{CC} = 27V, -V_{CC} = -3V,$		-75	+75	nA	1, 2
		V _{CM} = -12V		-100	+100	nA	3
		$+V_{CC} = 3V$, $-V_{CC} = -27V$, $V_{CM} = 12V$		-75	+75	nA	1, 2
		V _{CM} = 12V		-100	+100	nA	3
+I _{CC}	Power Supply Current	+V _{CC} = 15V, -V _{CC} = -15V			10	mA	1, 2
					11.5	mA	3
-I _{CC}	Power Supply Current	+V _{CC} = 15V, -V _{CC} = -15V		-5.0		mA	1
				-4.5		mA	2
				-6.0		mA	3
±I _{IB}	Input Bias Current	+V _{CC} = 15V, -V _{CC} = -15V, V _{CM} = 0V		-0.1	500	nA	1, 2
				-0.1	1000	nA	3
		$+V_{CC} = 27V, -V_{CC} = -3V,$		-0.1	750	nA	1, 2
		$V_{CM} = -12V$ + $V_{CC} = 3V$, - $V_{CC} = -27V$, $V_{CM} = 12V$		-0.1	1000	nA	3
				-0.1	750	nA	1, 2
				-0.1	1000	nA	3
CMRR	Common Mode Rejection	-12V \leq V _{CM} \leq +12V, -27V \leq -V _{CC} \leq -3V, 3V \leq +V _{CC} \leq 27V, R _S = 50Ω		90		dB	1, 2, 3
V_{OL}	Low Level Output Voltage	$+V_{CC} = 3.5V, -V_{CC} = -1V, \ V_{CM} = 1V, V_{IO} = 7mV, \ I_O = 3.2mA$			0.4	V	1, 2
					0.6	V	3
		$+V_{CC} = 2.25V, -V_{CC} = -2.25V, V_{CM} = 2.25V, V_{IO} = 7mV, I_{O} = 3.2mA$			0.4	V	1, 2
					0.6	V	3
		$+V_{CC} = 27V, -V_{CC} = -3V, \ V_{CM} = -12V, \ V_{IO} = 7mV, \ I_{O} = 25mA$			1.5	V	1, 2, 3
		$+V_{CC} = 3V, -V_{CC} = -27V, \ V_{CM} = 12V, \ V_{IO} = 7mV, \ I_{O} = 25mA$			1.5	V	1, 2, 3
I _{CEX}	Output Leakage Current	+V _{CC} = 18V, -V _{CC} = -18V, V _O = 18V		-1.0	2.0	μΑ	1
				-1.0	10	μA	2
A _V	Voltage Gain (Collector)	$+V_{CC} = 15V, -V_{CC} = -15V,$	(1)	10		K	4
		$V_0 = 1.5V$ to 11.5V	(1)	5.0		K	5, 6

⁽¹⁾ K = V/mV.

Draduat C

Copyright © 2005–2010, Texas Instruments Incorporated

SNOSAO2A – JULY 2005–REVISED SEPTEMBER 2010

www.ti.com

Electrical Characteristics AC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

AC: $\pm 15V$, $C_L = 50pF$

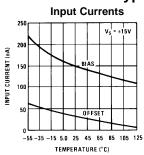
Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
tR _{LHC}	Response Time (Collector Output)	V_{OD} (overdrive) = +5mV, V_{I} = 100mV			125	nS	9
tR _{HLC}	Response Time (Collector Output)	V_{OD} (overdrive) = -5mV, V_{I} = 100mV			160	nS	9

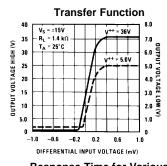
Submit Documentation Feedback Copyright © 200

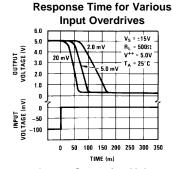
www.ti.com

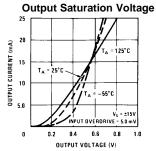
SNOSAO2A - JULY 2005-REVISED SEPTEMBER 2010

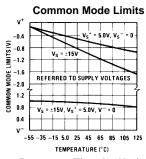
Electrical Characteristics DC Drift Parameters

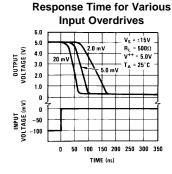

Delta calculations performed at Group B-5

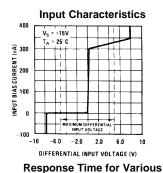

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V _{IO} Input Offset Voltage	$+V_{CC} = 15V$, $-V_{CC} = -15V$, $V_{CM} = 0V$, $R_S = 50\Omega$		-1.0	1.0	mV	1	
		$+V_{CC} = 27V$, $-V_{CC} = -3V$, $V_{CM} = -12V$, $R_S = 50\Omega$		-1.0	1.0	mV	1
		$+V_{CC} = 3V$, $-V_{CC} = -27V$, $V_{CM} = 12V$, $R_S = 50\Omega$		-1.0	1.0	mV	1
±I _{IB} Input Bias Current	$+V_{CC} = 15V, -V_{CC} = -15V,$ $V_{CM} = 0V$		-50	50	nA	1	
		$+V_{CC} = 27V, -V_{CC} = -3V,$ $V_{CM} = -12V$		-50	50	nA	1
		$+V_{CC} = 3V, -V_{CC} = -27V,$ $V_{CM} = 12V$		-50	50	nA	1

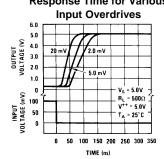

Typical Performance Characteristics

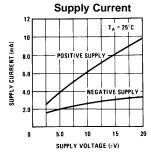

Product Folder Links: LM119JAN

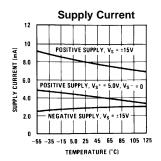


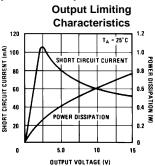


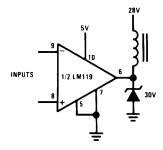




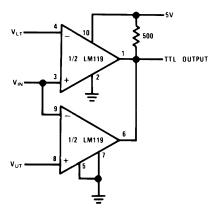







NSTRUMENTS

Typical Performance Characteristics (continued)



Typical Applications

Pin numbers are for metal can package.

Figure 3. Relay Driver

$$\begin{split} &V_{OUT} = 5V \text{ for } V_{LT} \leq V_{IN} \leq V_{UT} \\ &V_{OUT} = 0 \text{ for } V_{IN} \leq V_{LT} \text{or } V_{IN} \geq V_{UT} \end{split}$$

Figure 4. Window Detector

TEXAS INSTRUMENTS

SNOSAO2A – JULY 2005–REVISED SEPTEMBER 2010

www.ti.com

Table 2. Revision History Section

Date Released	Revision	Section	Changes
7/0105	Α	New release to corporate format	1 MDS datasheet converted into one corporate data sheet format MJLM119-X Rev. 0BL will be archived.
09/24/2010	В		Revision B, End of Life on Product/NSID Dec. 2009 Obsolete Data Sheet

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>