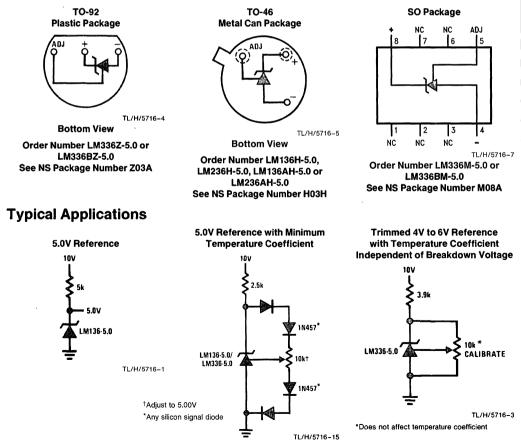
National Semiconductor

LM136-5.0/LM236-5.0/LM336-5.0, 5.0V Reference Diode

General Description

The LM136-5.0/LM236-5.0/LM336-5.0 integrated circuits are precision 5.0V shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient 5.0V zener with 0.6 Ω dynamic impedance. A third terminal on the LM136-5.0 allows the reference voltage and temperature coefficient to be trimmed easily.


The LM136-5.0 series is useful as a precision 5.0V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 5.0V makes it convenient to obtain a stable reference from low voltage supplies. Further, since the LM136-5.0 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.

The LM136-5.0 is rated for operation over -55° C to $+125^{\circ}$ C while the LM236-5.0 is rated over a -25° C to $+85^{\circ}$ C temperature range. Both are packaged in a TO-46

package. The LM336-5.0 is rated for operation over a 0°C to + 70°C temperature range and is available in a TO-92 plastic package. For applications requiring 2.5V see LM136-2.5.

Features

- Adjustable 4V to 6V
- Low temperature coefficient
- Wide operating current of 600 μA to 10 mA
- \blacksquare 0.6 Ω dynamic impedance
- \blacksquare ± 1% initial tolerance available
- Guaranteed temperature stability
- a Easily trimmed for minimum temperature drift
- Fast turn-on
- Three lead transistor package

Connection Diagrams

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

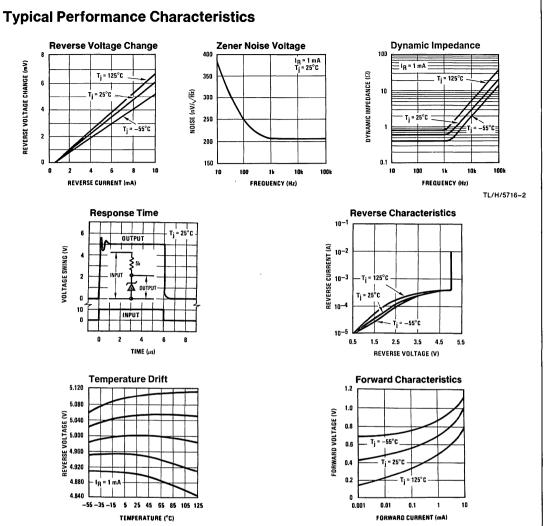
Reverse Current	15mA
Forward Current	10mA
Storage Temperature	-60°C to +150°C
Operating Temperature Range	
LM136-5.0	-55°C to +150°C
LM236-5.0	-25°C to +85°C
LM336-5.0	0°C to +70°C

260°C
300°C
215°C
220°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics (Note 1)

Parameter	Conditions	LM136A-5.0/LM236A-5.0 LM136-5.0/LM236-5.0			LM336B-5.0 LM336-5.0			Units
		Min	Тур	Max	Min	Тур	Max	
Reverse Breakdown Voltage	T _A =25°C, I _R =1 mA LM136-5.0/LM236-5.0/LM336-5.0 LM136A-5.0/LM236A-5.0, LM336B-5.0	4.9 4.95	5.00 5.00	5.1 5.05	4.8 4.90	5.00 5.00	5.2 5.1	v v
Reverse Breakdown Change With Current	T _A =25°C, 600 μA≤I _R ≤10 mA		6	12		6	20	mV
Reverse Dynamic Impedance	$T_{A} = 25^{\circ}C, I_{R} = 1 \text{ mA}$		0.6	1.2		0.6	2	Ω
Temperature Stability	V _R Adjusted 5.00V I _R = 1 mA, (<i>Figure 2</i>) 0°C≤T _A ≤70°C (LM336-5.0) -25°C≤T _A ≤ + 85°C (LM236-5.0) -55°C≤T _A ≤ + 125°C (LM136-5.0)		7 20	18 36		4	12	mV mV mV
Reverse Breakdown Change With Current	600 μA≤I _R ≤10 mA		6	17		6	24	mV
Adjustment Range	Circuit of Figure 1		±1			±1		V
Reverse Dynamic Impedance	I _R = 1 mA		0.8	1.6		0.8	2.5	Ω
Long Term Stability	$T_{A} = 25^{\circ}C \pm 0.1^{\circ}C, I_{R} = 1 \text{ mA}$		20			20		ppm


Note 1: Unless otherwise specified, the LM136-5.0 is specified from $-55^{\circ}C \le T_A \le +125^{\circ}C$, the LM236-5.0 from $-25^{\circ}C \le T_A \le +85^{\circ}C$ and the LM336-5.0 from $0^{\circ}C \le T_A \le +70^{\circ}C$.

Note 2: Temperature stability for the LM336 and LM236 family is guaranteed by design. Design limits are guaranteed (but not 100% percent production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels. Stability is defined as the maximum charge in V_{REF} from 25°C to T_A(min) or T_A(max).

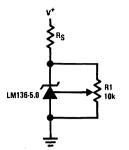
Note 3: For elevated temperature operation, Ti max is:

LM136 150°C LM236 125°C LM336 100°C

Thermal Resistance	TO-92	TO-46	SO-8		
θ_{ja} (Junction to Ambient)	180°C/W (0.4" Leads) 170°C/W (0.125" Leads)	440°C/W	165°C/W		
θ_{ja} (Junction to Case)	N/A	80°C/W	N/A		

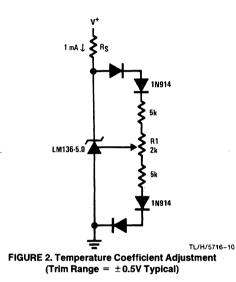
TL/H/5716-8

LM136-5.0/LM236-5.0/LM336-5.0

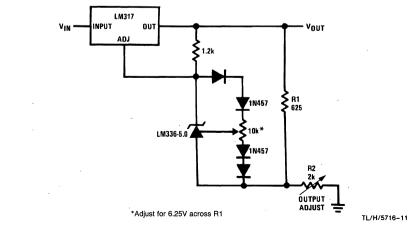

Application Hints

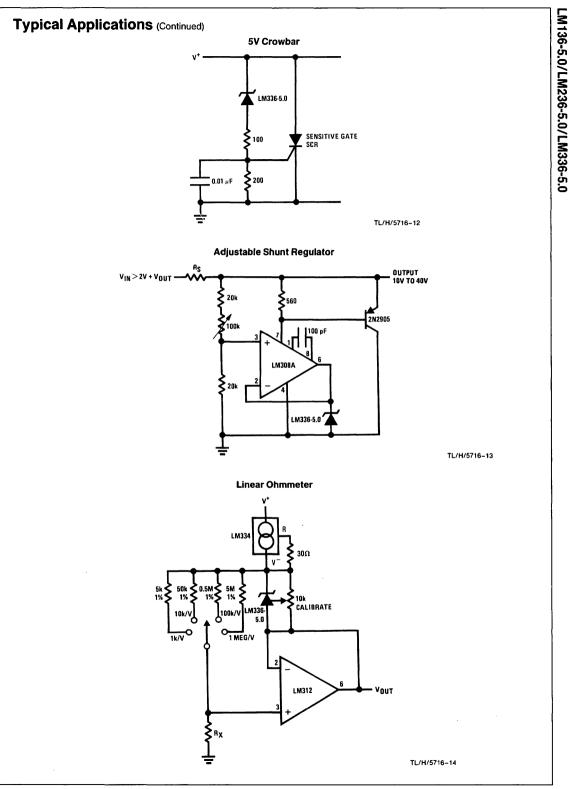
The LM136-5.0 series voltage references are much easier to use than ordinary zener diodes. Their low impedance and wide operating current range simplify biasing in almost any circuit. Further, either the breakdown voltage or the temperature coefficient can be adjusted to optimize circuit performance.

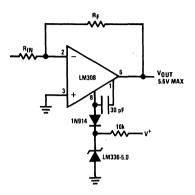
Figure 1 shows an LM136-5.0 with a 10k potentiometer for adjusting the reverse breakdown voltage. With the addition of R1 the breakdown voltage can be adjusted without affecting the temperature coefficient of the device. The adjustment range is usually sufficient to adjust for both the initial device tolerance and inaccuracies in buffer circuitry.


If minimum temperature coefficient is desired, four diodes can be added in series with the adjustment potentiometer as shown in *Figure 2*. When the device is adjusted to 5.00V the temperature coefficient is minimized. Almost any silicon signal diode can be used for this purpose such as a 1N914, 1N4148 or a 1N457. For proper temperature compensation the diodes should be in the same thermal environment as the LM136-5.0. It is usually sufficient to mount the diodes near the LM136-5.0 on the printed circuit board. The absolute resistance of the network is not critical and any value from 2k to 20k will work. Because of the wide adjustment range, fixed resistors should be connected in series with the pot to make pot setting less critical.

Application Hints (Continued)

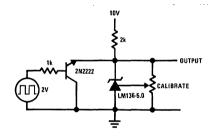


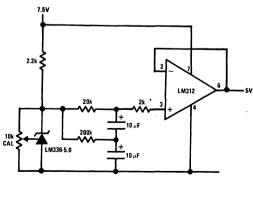

TL/H/5716-9

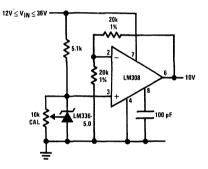


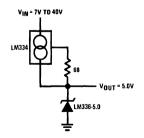


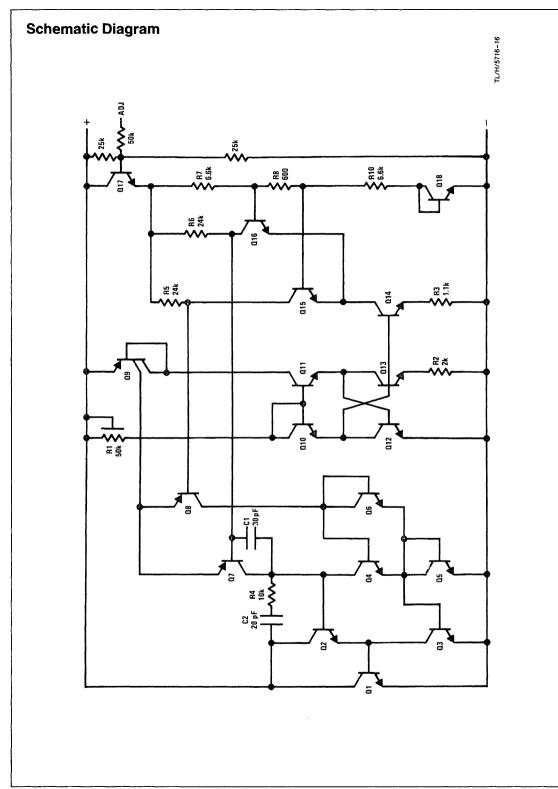
Typical Applications (Continued)


Op Amp with Output Clamped


Bipolar Output Reference


5.0V Square Wave Calibrator


Low Noise Buffered Reference


10V Buffered Reference

TL/H/5716-6

LM136-5.0/LM236-5.0/LM336-5.0