# TECHNOLOGY

LM334S8

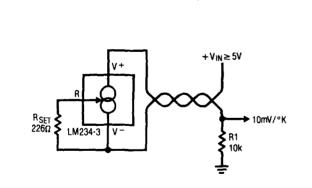
Constant Current Source and Temperature Sensor

## FEATURES

- 1µA to 10mA Operation
- 0.02%/V Regulation
- 0.8V to 30V Operating Voltage
- Can Be Used as Linear Temperature Sensor
- Draws No Reverse Current

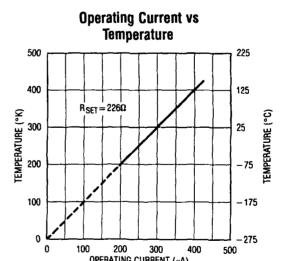
# **APPLICATIONS**

- Current Mode Temperature Sensing
- Constant Current Source for Shunt References
- Cold Junction Compensation
- Constant-Gain Bias for Bipolar Differential Stage
- Micropower Bias Networks
- Buffer for Photoconductive Cell
- Current Limiter


## DESCRIPTION

The LM334 is a three-terminal current source designed to operate at current levels from  $1\mu$ A to 10mA, as set by an external resistor. The device operates as a true two-terminal current source, requiring no extra power connections or input signals. Regulation is typically 0.02%/V and terminal-to-terminal voltage can range from 800mV to 30V.

Because the operating current is *directly proportional to absolute temperature* in degrees Kelvin, the device will also find wide applications as a temperature sensor. The temperature dependence of the operating current is + 0.336%/°C at room temperature. For example, a device operating at 298 $\mu$ A will have a temperature coefficient of + 1 $\mu$ A/°C. The temperature dependence is extremely accurate and repeatable.


3

If a zero temperature coefficient current source is required, this is easily achieved by adding a diode and a resistor.



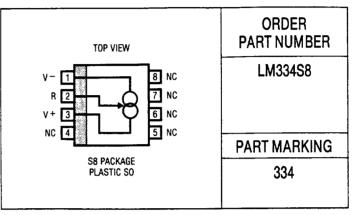
**Remote Temperature Sensor** 

with Voltage Output



UPERATING CURRENT (MA)






#### LM334S8

# **ABSOLUTE MAXIMUM RATINGS**

| V <sup>+</sup> to V <sup>-</sup> Forward Voltage |       |
|--------------------------------------------------|-------|
| V <sup>+</sup> to V <sup>-</sup> Reverse Voltage |       |
| R Pin to V <sup>-</sup> Voltage                  |       |
| Set Current                                      |       |
| Power Dissipation                                | 200mW |
| Operating Temperature Range                      |       |
| Lead Temperature (Soldering, 10 sec.)            | 300°C |

# PACKAGE/ORDER INFORMATION



# ELECTRICAL CHARACTERISTICS CURRENT SOURCE (Note 1)

| SYMBOL            | PARAMETER                                            | CONDITIONS                                                                                     | MIN   | LM334<br>TYP      | MAX          | UNITS       |
|-------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------|-------|-------------------|--------------|-------------|
| ∆I <sub>SET</sub> | Set Current Error, V <sup>+</sup> = 2.5V<br>(Note 2) | 10μA≤I <sub>SET</sub> ≤1mA<br>1mA <i<sub>SET≤5mA<br/>2μA≤I<sub>SET</sub>&lt;10μA</i<sub>       |       |                   | 6<br>8<br>12 | %<br>%<br>% |
|                   | Ratio of Set Current to<br>V <sup>-</sup> Current    | $10\mu A \le I_{SET} \le 1mA$<br>$1mA \le I_{SET} \le 5mA$<br>$2\mu A \le I_{SET} \le 10\mu A$ | 14    | 18<br>14<br>18    | 26<br>26     |             |
| V <sub>MIN</sub>  | Minimum Operating Voltage                            | 2µA≤I <sub>SET</sub> ≤100µA<br>100µA <i<sub>SET≤1mA<br/>1mA<i<sub>SET≤5mA</i<sub></i<sub>      |       | 0.8<br>0.9<br>1.0 |              | v<br>v<br>v |
|                   | Average Change in Set Current<br>with Input Voltage  | 1.5V ≤ V <sup>+</sup> ≤5V<br>2µA ≤ I <sub>SET</sub> ≤ 1mA<br>5V ≤ V <sup>+</sup> ≤ 30V         |       | 0.02<br>0.01      | 0.1<br>0.05  | %/V<br>%/V  |
|                   |                                                      | 1.5V ≤ V ≤ 5V<br>1mA < I <sub>SET</sub> ≤ 5mA<br>5V ≤ V ≤ 30V                                  |       | 0.03<br>0.02      |              | %/V<br>%/V  |
|                   | Temperature Dependence of<br>Set Current (Note 3)    | 25µA ≤ I <sub>SET</sub> ≤ 1mA                                                                  | 0.96T | т                 | 1.04T        |             |
| Cs                | Effective Shunt Capacitance                          |                                                                                                |       | 15                |              | pF          |

**Note 1:** Unless otherwise specified, tests are performed at  $T_j = 25^{\circ}$ C with pulse testing so that junction temperature does not change during test. **Note 2:** Set current is the current flowing into the V<sup>+</sup> pin. It is determined by the following formula:  $I_{SET} = 67.7$ mV/R<sub>SET</sub> (@25°C). Set current error is expressed as a percent deviation from this amount.  $I_{SET}$  increases at 0.336%/°C@T<sub>j</sub> = 25°C. **Note 3:**  $I_{SET}$  is directly proportional to absolute temperature (°K).  $I_{SET}$  at any temperature can be calculated from:  $I_{SET} = I_0$  (T/T<sub>0</sub>) where  $I_0$  is  $I_{SET}$  measured at T<sub>0</sub> (°K).



