

SNOS402C - MAY 2004-REVISED OCTOBER 2011

LM66 Dual Output Internally Preset Thermostat

Check for Samples: LM66

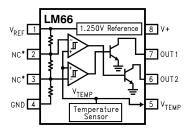
FEATURES

- Digital outputs support TTL logic levels
- · Internal temperature sensor
- 2 internal comparators with hysteresis
- Internal voltage reference
- Currently available in 8-pin SO plastic package

APPLICATIONS

- Microprocessor Thermal Management
- Appliances
- Portable Battery Powered 3.0V or 5V Systems
- Fan Control
- Industrial Process Control
- HVAC Systems
- Remote Temperature Sensing
- Electronic System Protection

DESCRIPTION

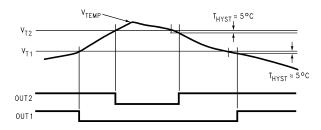

The LM66 is a precision low power thermostat. Two stable temperature trip points (V_{T1} and V_{T2}) are generated by dividing down the LM66 1.250V bandgap voltage reference using a resistors divider network. The LM66 has two digital outputs. OUT1 goes LOW when the temperature exceeds T1 and goes HIGH when the temperature goes below (T1–T_{HYST}). Similarly, OUT2 goes LOW when the temperature exceeds T2 and goes HIGH when the temperature goes below (T2–T_{HYST}). T_{HYST} is an internally set 5°C typical hysteresis.

The LM66 is currently available in an 8-lead small outline package.

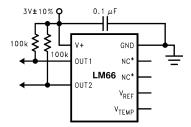
Table 1. Key Specifications

	VALUE	UNIT
■ Power Supply Voltage	2.7V to 10	V
■ Power Supply Current	250 μA (max)	
■ V _{REF}	1.250V ±1.4% (max)	
■ Hysteresis Temperature	5°C	
■ Internal Temperature Sensor Output Voltage	(+6.20 mV/°C x T) +400mV	
■ Temperature Trip Point Accuracy	±3°C (max)	
■ T1 set point	+73°C	
■ T2 set point	+82°C	

Simplified Block Diagram and Connection Diagram



M


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Typical Application

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)

12V
5 mA
20 mA
900 mW
1000V
200V
215°C
220°C
-65°C to + 150°C

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- (2) When the input voltage (V_I) at any pin exceeds the power supply (V_I < GND or V_I > V⁺), the current at that pin should be limited to 5 mA. The 20 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 5 mA to four.
- (3) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (junction to ambient thermal resistance) and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_D = (T_{Jmax} T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $T_{Jmax} = 125^{\circ}C$. For this device the typical thermal resistance (θ_{JA}) of the different package types when board mounted follow:
- (4) The human body model is a 100 pF capacitor discharge through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.
- (5) See AN450 "Surface Mounting Methods and Their Effects on Product Reliability" or the section titled "Surface Mount" found in any post 1986 National Semiconductor Linear Data Book for other methods of soldering surface mount devices.

Operating Ratings (1)

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Submit Documentation Feedback

SNOS402C -MAY 2004-REVISED OCTOBER 2011

Operating Ratings (1) (continued)

Operating Temperature Range	$T_{MIN} \le T_A \le T_{MAX}$
LM66CIM	-40°C ≤ T _A ≤ +125°C
Positive Supply Voltage (V ⁺)	+2.7V to +10V
Maximum V_{OUT1} and V_{OUT2}	+10V

LM66 Electrical Characteristics

The following specifications apply for $V^+ = 2.7 \ V_{DC}$, and V_{REF} load current = 0 μA unless otherwise specified. **Boldface limits apply for T**_A = T_J = T_{MIN} **to T**_{MAX}; all other limits T_A = T_J = 25°C unless otherwise specified.

Symbol	Parameter	Conditions	Typical	LM66CIM Limits (2)	Units (Limits)
emperature	Sensor				
	Trip Point Accuracy (Includes				
	V _{REF} , Comparator Offset, and	+25°C ≤ T _A ≤ +85°C		±3	°C (max)
	Temperature Sensitivity errors)				
	Trip Point Hysteresis	T _A = +73°C	6	4.5	°C (min)
				7.5	°C (max)
		T _A = +82°C	6	4.5	°C (min)
				7.5	°C (max)
	Internal Temperature Sensitivity		+6.20		mV/°C
	Temperature Sensitivity Error	+25°C ≤ T _A ≤ +85°C		±3	°C (max)
		-25°C ≤ T _A ≤ +125°C		±4	°C (max)
		-40°C ≤ T _A ≤ -25°C		±5	°C (max)
	Output Impedance	-1 μA ≤ I _L ≤ +40 μA		1500	Ω (max)
	Line Regulation	+3.0V ≤ V ⁺ ≤ +10V, +25°C ≤ T _A ≤ +85°C		±0.36	mV/V (max)
		+3.0V ≤ V ⁺ ≤ +10V, -40°C ≤ T _A <25°C		±0.61	mV/V (max)
		+2.7V ≤ V ⁺ ≤ +3.3V		±2.3	mV (max)
REF Output					
REF	V _{REF} Nominal		1.250V		V
	V _{REF} Error			±1.4	% (max)
				±17.5	mV (max)
V _{REF} /ΔV ⁺	Line Regulation	+3.0V ≤ V ⁺ ≤ +10V	0.13	0.21	mV/V (max)
		+2.7V ≤ V ⁺ ≤ +3.3V	0.15	1.5	mV (max)

Submit Documentation Feedback

Typicals are at $T_J = T_A = 25^{\circ}\text{C}$ and represent most likely parametric norm. Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

SNOS402C-MAY 2004-REVISED OCTOBER 2011

LM66 Electrical Characteristics

The following specifications apply for $V^+ = 2.7~V_{DC}$, and V_{REF} load current = 50 μA unless otherwise specified. **Boldface limits apply for T**_A = **T**_J = **T**_{MIN} **to T**_{MAX}; all other limits T_A = T_J = 25°C unless otherwise specified.

Symbol	Parameter	Conditions	Typical (1)	Limits	Units (Limits)
V ⁺ Power Supply					
I _S	Supply Current	V ⁺ = +10V		250	μA (max)
		$V^+ = +2.7V$		250	μA (max)
Digital Output(s)					
I _{OUT("1")}	Logical "1" Output Leakage Current	V ⁺ = +5.0V		1	μA (max)
V _{OUT("0")}	Logical "0" Output Voltage	I _{OUT} = +50 μA		0.4	V (max)

⁽¹⁾ Typicals are at $T_J = T_A = 25^{\circ}\text{C}$ and represent most likely parametric norm. (2) Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

SNOS402C-MAY 2004-REVISED OCTOBER 2011

www.ti.com

Package Type	θ_{JA}
M08A	110°C/W

Part Number Template

The series of digits labled vw xy z in the part number LM66CIM-vw xy z, describe the set points and the function of OUT1 and OUT2 as follows:

The place holders v w describe the set point of T1 as shown in the following table.

The place holders xy describe the set point of T2 as shown in the following table. z=0 (Other assignments are reserved.)

For example the part number LM66CIM-RLSKB has: $T1 = 73^{\circ}C$, $T2 = 82^{\circ}C$, OUT1 and OUT2 set as active-low open-collector outputs with OUT1 mapped to pin 7 and OUT2 mapped to pin 6.

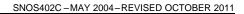

v, w, x and y	Temperature (°C)	
В	-5	
С	-4	
D	-3	
F	-2	
G	-1	
Н	-0	
J	1	
K	2	
L	3	
N	4	
Р	5	
Q	6	
R	7	
S	8	
T	9	
V	10	
X	11	
Y	12	
Z	13	

Table 2.

The value of z describes the assignment/function of OUT1 and OUT2 as shown in the following table:

Active Low//High	Open Collector/ Totem Pole	Mapping	Value of z	Function of OUT1 and OUT2
0	0	0	В	Active-Low, Open-Collector, OUT1 mapped to pin 7, OUT2 mapped to pin 6
0	0	1	С	Active-Low, Open-Collector, OUT1 mapped to pin 6, OUT2 mapped to pin 7
0	1	0	D	Active-Low, Totem Pole, OUT1 mapped to pin 7, OUT2 mapped to pin 6
0	1	1	F	Active-Low, Totem Pole, OUT1 mapped to pin 6, OUT2 mapped to pin 7
1	0	0	G	Active-High, Open-Collector, OUT1 mapped to pin 7, OUT2 mapped to pin 6
1	0	1	Н	Active-High, Open-Collector, OUT1 mapped to pin 6, OUT2 mapped to pin 7

STRUMENTS

$\label{thm:continuous} Table~2.$ The value of z describes the assignment/function of OUT1 and OUT2 as shown in the following table:

(continued) Active Open Collector/ Mapping Value of z Function of OUT1 and OUT2 Low//High **Totem Pole** 0 J Active-High, Totem Pole, OUT1 mapped to pin 7, OUT2 mapped to pin 1 1 Κ Active-High, Totem Pole, OUT1 mapped to pin 6, OUT2 mapped to pin 1

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products Applications

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers DI P® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/medical Interface interface.ti.com Medical www.ti.com/security

Power Mgmt <u>power.ti.com</u> Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity