

Operational Amplifiers

LM747/LM747C dual operational amplifiers

general description

The LM747 and the LM747C are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.

Features of the LM747 and LM747C include offset nulling, short circuit protection, internal frequency compensation, wide common mode and differential mode range. Power drain is reduced by sharing bias resistors. The offset voltage and offset current of the amplifiers are quaranteed over the full common mode range. Additional features of the LM747 and LM747C are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package flexibility.

The LM747C is identical to the LM747 except that the LM747C has its specifications guaranteed over the temperature range from 0° C to 70° C instead of -55° C to $+125^{\circ}$ C.

109

LM747/LM747C

absolute maximum ratings

Supply Voltage LM747	122∨		
LM747C	±18V		
Power Dissipation (Note 1)	800 mW		
Differential Input Voltage	±30V		
Input Voltage (Note 2)	+15V		
Output Short-Circuit Duration	Indefinite		
Operating Temperature Range LM747	-55 C to 125 C		
LM747C	0 C to 70 C		
Storage Temperature Range	-65 C to 150 C		
Lead Temperature (Soldering, 10 sec)	300 C		

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	LM747			LM747C			
		MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	T _A = 25°C, R _S < 10 kΩ		1.0	5.0		1.0	6.0	mV
Input Offset Current	T _A = 25°C		80	200		80	200	nA
Input Bias Current	T _A = 25 [°] C		200	500		200	500	nA
Input Resistance	T _A ≃ 25 [°] C	0.3	1.0		0.3	1.0		MΩ
Supply Current Both Amplifiers	T _A = 25 C, V _S = ±15V		3.0	4.0		3.0	4.5	mA
Large Signal Voltage Gain	T _A = 25 °C, V _S = ±15V V _{OUT} = ±10V, R _L > 2 kΩ	50	160		50	160		V/mV
Input Offset Voltage	R_{s} \leq 10 k Ω			6.0			7.5	mV
Input Offset Current				500			300	nA
Input Bias Current				1.5			0.8	μΑ
Large Signal Voltage Gain	V _S = ±15V, V _{OUT} = +10V R _L ≥ 2 kΩ	25			25			V/mV
Output Voltage Swing	V _S = ±15V, R _L = 10 kΩ R _L = 2 kΩ	+ 12 ± 10	± 14 ± 13		±12 ±10	± 14 ± 13		V V
Input Voltage Range	V _S = ±15V	±12		*	+12			v
Common Mode Rejection Ratio	R_{S} < 10 k Ω	70	90		70	90		dB
Supply Voltage Rejection Ratio	$ m R_S$ < 10 k Ω	77	96		77	96		dB

Note 1: The maximum junction temperature of the LM747 is 150°C, while that of the LM747C is 100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to case.

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: These specifications apply for $\pm 5V \leq V_S \leq \pm 22V$ and $-55^{\circ}C \leq T_A \leq 125^{\circ}C$, unless otherwise specified. With the LM747C, however, all specifications are limited to $0^{\circ}C \leq T_A \leq 70^{\circ}C$ and $\pm 5V \leq V_S \leq \pm 18V$.