LM9810,LM9820

LM9810/LM9820 10/12-Bit Image Sensor Processor Analog Front End

LM9810/LM9820

10/12-Bit Image Sensor Processor Analog Front End

General Description

The LM9810 and LM9820 are high performance Analog Front Ends (AFEs) for image sensor processing systems. The LM9810/20 performs all the analog and mixed signal functions (correlated double sampling, color specific gain and offset correction, and analog to digital conversion) necessary to digitize the output of a wide variety of CIS and CCD sensors. The LM9810 has a 10-bit 6 MHz ADC, and the LM9820 has a 12-bit 6 MHz ADC. The LM9810 and LM9820 are pin-for-pin and functionally compatible.

Key Specifications

- Output Data Resolution

10/12 Bits

- Pixel Conversion Rate 6 MHz
- Supply Voltage $5 \mathrm{~V} \pm 5 \%$
- Power Dissipation

Connection Diagram

Ordering Information

Commercial $\left(\mathbf{0}^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq \boldsymbol{+ 7 0 ^ { \circ } \mathrm { C })}\right.$	Package
LM9810CCWM	20-Pin Wide SOIC
LM9810CCWMX	20-Pin Wide SOIC, Tape and Reel
LM9820CCWM	20-Pin Wide SOIC
LM9820CCWMX	20-Pin Wide SOIC, Tape and Reel

Absolute Maximum Ratings (Notes 1, 2)	
Positive Supply Voltage $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}=\right.$ with Respect to	6.5 V
Voltage on any Input or Output Pin	0.3 V to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Input Current at any Pin (Note 3)	$\pm 25 \mathrm{~mA}$
Package Input Current (Note 3)	$\pm 50 \mathrm{~mA}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	(Note 4)
ESD Susceptibility (Note 5)	
Human Body Model	2000 V
Soldering Information (Note 6)	
Infrared, 10 seconds	$300^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings (Notes 1, 2)

Operating Temperature

Range	$\mathrm{T}_{\text {MIN }}=0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {A }}$ Supply Voltage	+4.75 V to +5.25 V
V_{D} Supply Voltage	+4.75 V to +5.25 V
$\left\|V_{A}-V_{D}\right\|$	$\leq 100 \mathrm{mV}$
$\mathrm{OS}_{\mathrm{R}}, \mathrm{OS}_{\mathrm{G}}, \mathrm{OS}_{\mathrm{B}}$	
Input Voltage Range	-0.05 V to $\mathrm{V}_{\mathrm{A}}+0.05 \mathrm{~V}$
NewLine, SampCLK, D0-D2, MCLK	
Input Voltage Range	-0.05 V to $\mathrm{V}_{\mathrm{D}}+0.05 \mathrm{~V}$

Electrical Characteristics

The following specifications apply for $\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{D}}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{MCLK}}=24 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 7, 8, 12)

Symbol	Parameter	Conditions	Typical (Note 9)	Limits (Note 10)	Units (Limits)
CCD/CIS SOURCE REQUIREMENTS FOR FULL SPECIFIED ACCURACY AND DYNAMIC RANGE (Note 12)					
$\mathrm{V}_{\text {OS PEAK }}$	Sensor's Maximum Peak Differential Signal Range	$\begin{aligned} & \text { Gain }=0.933 \\ & \text { Gain }=3.0 \\ & \text { Gain }=9.0 \end{aligned}$	$\begin{gathered} \hline 2.1 \\ 0.65 \\ 0.21 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
ANALOG INPUT CHARACTERISTICS					
	$\mathrm{OS}_{\mathrm{R}}, \mathrm{OS}_{\mathrm{G}}, \mathrm{OS}_{\mathrm{B}}$ Input Capacitance		5		pF
	$\mathrm{OS}_{\mathrm{R}}, \mathrm{OS}_{\mathrm{G}}, \mathrm{OS}_{\mathrm{B}}$ Input Leakage Current	Measured with $\mathrm{OS}=3.5 \mathrm{~V}_{\mathrm{DC}}$ CDS disabled, selected OS Input	20	25	$\mu \mathrm{A}(\max)$ nA
		CDS disabled, unselected OS Input	10		

COARSE COLOR BALANCE PGA CHARACTERISTICS

	Monotonicity			5	bits (min)
	G_{0} (Minimum PGA Gain)	PGA Setting = 0	0.93	$\begin{aligned} & .90 \\ & .96 \end{aligned}$	$\begin{aligned} & \text { V/V (min) } \\ & \text { V/V (max) } \end{aligned}$
	G_{31} (Maximum PGA Gain)	PGA Setting = 31	3.0	$\begin{aligned} & 2.96 \\ & 3.15 \end{aligned}$	$\begin{aligned} & \text { V/V (min) } \\ & \text { V/V }(\max) \end{aligned}$
	x3 Boost Gain	x3 Boost Setting On (bit B5 of Gain Register is set)	3.0	$\begin{aligned} & 2.93 \\ & 3.05 \end{aligned}$	V/V (min) V/V (max)
	Gain Error at any Gain (Note 13)		± 0.4	1.67	\% (max)
INTERNAL REFERENCE CHARACTERISTICS					
$\mathrm{V}_{\text {REFMID }}$	Mid Supply Output Voltage		2.5		V
$\mathrm{V}_{\text {REF+ }}$	Positive Reference Output Voltage		3.5		V
$\mathrm{V}_{\text {REF }}$	Negative Reference Output Voltage		1.5		V
	Differential Reference Voltage $\mathrm{V}_{\text {REF+ }}-\mathrm{V}_{\text {REF- }}$		2.0		V

LM9810 Electrical Characteristics

The following specifications apply for $A G N D=D G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{D}}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{MCLK}}=24 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. All LSB limits are in units of the LM9810's 10-bit ADC. (Notes 7, 8, 12)

| Symbol Parameter | Conditions | Typical
 (Note 9) | Limits
 (Note 10) | Units
 (Limits) | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| ADC CHARACTERISTICS | | | | | |
| | Resolution with No Missing Codes | | | $\mathbf{1 0}$ | bits (min) |
| INL | Integral Non-Linearity Error (Note 11) | | ± 0.35 | ± 1.5 | LSB (max) |

LM9810 Electrical Characteristics (Continued)

The following specifications apply for $A G N D=D G N D=0 V, V_{A}=V_{D}=+5.0 \mathrm{~V}_{D C}, f_{M C L K}=24 \mathrm{MHz}, R_{S}=25 \Omega$. Boldface limits apply for $T_{A}=T_{J}=T_{\text {min }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. All LSB limits are in units of the LM9810's 10-bit ADC. (Notes 7, 8, 12)

Symbol	Parameter	Conditions	Typical (Note 9)	Limits (Note 10)	Units (Limits)
ADC CHARACTERISTICS					
DNL	Differential Non-Linearity		± 0.25	± 1.0	LSB (max)
FULL CHANNEL LINEARITY (Note 14)					
INL	Integral Non-Linearity Error (Note 11)		± 0.9		LSB
DNL	Differential Non-Linearity		± 0.40		LSB
STATIC OFFSET DAC CHARACTERISTICS					
	Monotonicity			6	bits (min)
	Offset DAC LSB Size	PGA Gain = 1	5	$\begin{aligned} & \hline 3.4 \\ & 6.4 \end{aligned}$	$\begin{aligned} & \hline \text { LSB (min) } \\ & \text { LSB (max) } \end{aligned}$
	Offset DAC Adjustment Range	PGA Gain = 1	± 150	± 140	LSB (min)
SYSTEM CHARACTERISTICS (SEE SECTION 1.7.1, INTERNAL OFFSETS)					
C	Analog Channel Gain Constant (ADC Codes/V)	Includes Voltage Reference Variation, Gain Setting $=1$	502	$\begin{aligned} & 468 \\ & 532 \end{aligned}$	$\begin{aligned} & \text { LSB (min) } \\ & \text { LSB (max) } \end{aligned}$
$\mathrm{V}_{\text {OS } 1}$	Pre-Boost Analog Channel Offset Error, CCD Mode		4.4	$\begin{gathered} -7.2 \\ +15.7 \end{gathered}$	$\begin{aligned} & \text { LSB (min) } \\ & \text { LSB (max) } \end{aligned}$
$\mathrm{V}_{\text {OS } 1}$	Pre-Boost Analog Channel Offset Error, CIS Mode		4.5	$\begin{gathered} \hline-6.5 \\ +15.2 \end{gathered}$	$\begin{aligned} & \text { LSB (min) } \\ & \text { LSB (max) } \end{aligned}$
$\mathrm{V}_{\text {OS2 }}$	Pre-PGA Analog Channel Offset Error		-10	$\begin{gathered} \hline-28 \\ +5.3 \end{gathered}$	$\begin{aligned} & \text { LSB (min) } \\ & \text { LSB (max) } \end{aligned}$
$\mathrm{V}_{\text {OS3 }}$	Post-PGA Analog Channel Offset Error		-11	$\begin{aligned} & \hline-30.6 \\ & +7.3 \end{aligned}$	$\begin{aligned} & \text { LSB (min) } \\ & \text { LSB (max) } \end{aligned}$

LM9820 Electrical Characteristics

The following specifications apply for $A G N D=D G N D=0 V, V_{A}=V_{D}=+5.0 V_{D C}, f_{M C L K}=24 M H z, R_{S}=25 \Omega$. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. All LSB limits are in units of the LM9810's 12-bit ADC.
(Notes 7, 8, 12)

Symbol	Parameter	Conditions	Typical (Note 9)	Limits (Note 10)	Units (Limits)

ADC CHARACTERISTICS

	Resolution with No Missing Codes			$\mathbf{1 2}$	bits (min)
INL	Integral Non-Linearity Error (Note 11)		± 1.1	$\mathbf{\pm 4 . 0}$	LSB (max)
DNL	Differential Non-Linearity		± 0.6	$\mathbf{+ 1 . 7 5}$	LSB (max)
				$\mathbf{- 1 . 0}$	

FULL CHANNEL LINEARITY (Note 14)

INL	Integral Non-Linearity Error (Note 11)		± 3.4		LSB
DNL	Differential Non-Linearity		± 0.65		LSB

STATIC OFFSET DAC CHARACTERISTICS

	Monotonicity			6	bits (min)
	Offset DAC LSB Size	PGA Gain = 1	20	14	LSB (min)
				26	LSB (max)
	Offset DAC Adjustment Range	PGA Gain = 1	± 590	± 575	LSB (min)
SYSTEM CHARACTERISTICS (SEE SECTION 1.7.1, INTERNAL OFFSETS)					
C	Analog Channel Gain Constant	Includes Voltage Reference	2008	1873	LSB (min)
	(ADC Codes/V)	Variation, Gain Setting = 1		2129	LSB (max)
$\mathrm{V}_{\text {OS } 1}$	Pre-Boost Analog Channel Offset Error, CCD Mode		17.6	-32.1	LSB (min)
				+68.9	LSB (max)

LM9820 Electrical Characteristics

(Continued)
The following specifications apply for $A G N D=D G N D=0 V, V_{A}=V_{D}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{MC}}=24 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAx }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. All LSB limits are in units of the LM9810's 12-bit ADC. (Notes 7, 8, 12)

Symbol	Parameter	Conditions	Typical (Note 9)	Limits (Note 10)	Units (Limits)
SYSTEM CHARACTERISTICS (SEE SECTION 1.7.1, INTERNAL OFFSETS)					
$\mathrm{V}_{\text {OS } 1}$	Pre-Boost Analog Channel Offset Error, CIS Mode		18	$\begin{gathered} -22.2 \\ +57 \end{gathered}$	$\begin{aligned} & \text { LSB (} \min \text {) } \\ & \text { LSB (max) } \end{aligned}$
$\mathrm{V}_{\text {OS2 }}$	Pre-PGA Analog Channel Offset Error		-40	$\begin{aligned} & \hline-94.3 \\ & +16.4 \end{aligned}$	$\begin{aligned} & \hline \text { LSB (min) } \\ & \text { LSB (max) } \end{aligned}$
$\mathrm{V}_{\text {Os3 }}$	Post-PGA Analog Channel Offset Error		-44	$\begin{aligned} & -121 \\ & +28 \end{aligned}$	$\begin{aligned} & \text { LSB (min) } \\ & \text { LSB (max) } \end{aligned}$

DC and Logic Electrical Characteristics

The following specifications apply for $A G N D=D G N D=O V, V_{A}=V_{D}=+5.0 V_{D C}, f_{M C L K}=24 M H z, R_{s}=25 \Omega$. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 7, 8)

Symbol	Parameter	Conditions	Typical (Note 9)	Limits (Note 10)	Units (Limits)

D0-D2, MCLK, NewLine, SampCLK DIGITAL INPUT CHARACTERISTICS

$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{D}}=5.25 \mathrm{~V}$		2.0	V (max)
$\mathrm{V}_{\text {IN }(0)}$	Logical "0" Input Voltage	$\mathrm{V}_{\mathrm{D}}=4.75 \mathrm{~V}$		0.8	$V(\min)$
I_{IN}	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{D}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{DGND} \end{aligned}$	$\begin{gathered} \hline 0.1 \\ -0.1 \end{gathered}$		$\mu \mathrm{A}(\max)$ $\mu \mathrm{A}(\max)$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5		pF

D0-D5, DIGITAL OUTPUT CHARACTERISTICS

$\mathrm{V}_{\text {OUT (1) }}$	Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{D}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-360 \mu \mathrm{~A}$ $\mathrm{~V}_{\mathrm{D}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-10 \mu \mathrm{~A}$		$\mathbf{2 . 4}$	$\mathrm{~V}(\mathrm{~min})$
		$\mathrm{V}_{\mathrm{D}}=5.25 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1.6 \mathrm{~mA}$	$\mathbf{4 . 4}$	$\mathrm{~V}(\mathrm{~min})$	
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\mathrm{V}_{\text {OUT }}=\mathrm{DGND}$	$\mathbf{0 . 4}$	$\mathrm{V}(\mathrm{max})$	
$\mathrm{I}_{\text {OUT }}$	TRI-STATE ${ }^{\oplus}$ Output Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{D}}$	0.1		$\mu \mathrm{~A}$
	(D0-D5 only)	-0.1		$\mu \mathrm{~A}$	

POWER SUPPLY CHARACTERISTICS

I_{A}	Analog Supply Current	Operating	45	$\mathbf{5 7}$	$\mathrm{~mA}(\mathrm{max})$
		Standby with Input Clocks Stopped	0.8	$\mathbf{0 . 9}$	$\mathrm{~mA}(\mathrm{max})$
		Standby with Input Clocks Running	3.0		mA
			220	$\mathbf{3 2 0}$	$\mu \mathrm{~A}(\mathrm{max})$
	Digital Supply Current (Note 15)	Operating	110	$\mathbf{2 0 0}$	$\boldsymbol{\mu A}(\mathrm{max})$
		Standby with Input Clocks Stopped	$\mu \mathrm{A}$		

AC Electrical Characteristics

The following specifications apply for AGND $=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{A}=\mathrm{V}_{\mathrm{D}}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\text {MCLK }}=24 \mathrm{MHz}, \mathrm{t}_{\text {MCLK }}=1 / \mathrm{f}_{\text {MCLK }}$,
$t_{r}=t_{f}=5 \mathrm{~ns}, R_{s}=25 \Omega$. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 7, 8)

Symbol	Parameter	Conditions	Typical (Note 9)	Limits (Note 10)	Units (Limits)
$\mathrm{f}_{\text {MCLK }}$	Maximum MCLK Frequency			24	MHz (min)
	MCLK Duty Cycle			$\begin{aligned} & 40 \\ & 60 \end{aligned}$	-
$\mathrm{t}_{\text {MCLK }}$	MCLK Period		41		ns (min)
$\mathrm{t}_{\text {SCNL }}$	SampCLK Falling Edge before NewLine Falling Edge			3	$\mathrm{t}_{\text {MCLK }}$ (min)
$\mathrm{t}_{\text {SampCLK }}$	SampCLK Period			4	$\mathrm{t}_{\text {MCLK }}$ (min)
$\mathrm{t}_{\text {SampLo }}$	Low Time for SampCLK		50		ns (min)

AC Electrical Characteristics (Continued)

The following specifications apply for AGND $=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{A}=\mathrm{V}_{\mathrm{D}}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{MCLK}}=24 \mathrm{MHz}, \mathrm{t}_{\mathrm{MCLK}}=1 / \mathrm{f}_{\text {MCLK }}$, $t_{r}=t_{f}=5 \mathrm{~ns}, R_{s}=25 \Omega$. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 7, 8)

Symbol	Parameter	Conditions	Typical (Note 9)	Limits (Note 10)	Units (Limits)
$\mathrm{t}_{\text {SampHi }}$	High Time for SampCLK		50		ns (min)
$\mathrm{t}_{\text {SampSU }}$	SampCLK Falling Edge before Rising Edge of MCLK			4	ns (min)
$\mathrm{t}_{\text {DDO }}$	Falling Edge of MCLK before New Valid Data			40	ns (max)
$\mathrm{t}_{\text {HDO }}$	Hold Time of Current Data from Falling edge of MCLK			15	ns (min)
$\mathrm{f}_{\text {SCLK }}$	D2(SCLK) Serial Clock Period		1		$\mathrm{t}_{\text {MCLK }}(\mathrm{min})$
$\mathrm{t}_{\text {DSU }}$	Input Data Setup Time before D2(SCLK) Rising Edge			0	ns (min)
t_{DH}	Input Data Hold Time after D2(SCLK) Rising Edge			3	$n \mathrm{n}$ (min)
$\mathrm{t}_{\text {SCLKLA }}$	D2(SCLK) Rising Edge after Bit B0 before D1(Latch) Rising Edge			3	$n \mathrm{n}$ (min)
$\mathrm{t}_{\text {LASCLK }}$	D1(Latch) Rising Edge before next D2(SCLK) Rising Edge			3	ns (min)
$\mathrm{t}_{\text {LA }}$	High Time for D1(Latch)			3	$\mathrm{t}_{\text {MCLK }}(\mathrm{min})$
$\mathrm{t}_{\text {LANL }}$	D1(Latch) Rising Edge before NewLine Falling Edge			3	$t_{\text {SampCLK }}$ (min)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: All voltages are measured with respect to $G N D=A G N D=D G N D=0 V$, unless otherwise specified.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathbb{I N}}\right)$ at any pin exceeds the power supplies ($\mathrm{V}_{\mathbb{I N}}<G N D$ or $\mathrm{V}_{\mathbb{I N}} \mathrm{V}_{\mathrm{A}}$ or V_{D}), the current at that pin should be limited to 25 mA . The 50 mA maximum package input current rating limits the number of pins that can simultaneously safely exceed the power supplies with an input current of 25 mA to two.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\mathrm{Jmax}}, \theta_{\mathrm{JA}}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J \max }-T_{A}\right) / \theta_{J A} \cdot T_{J \max }=150^{\circ} \mathrm{C}$ for this device. The typical thermal resistance (θ_{JA}) of this part when board mounted is $84^{\circ} \mathrm{C} / \mathrm{W}$ for the M20 SOIC package.
Note 5: Human body model, 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in any National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 7: Two diodes clamp the OS analog inputs to AGND and V_{A} as shown below. This input protection, in combination with the external clamp capacitor and the output impedance of the sensor, prevents damage to the LM9810/20 from transients during power-up.

Note 8: To guarantee accuracy, it is required that V_{A} and V_{D} be connected together to the same power supply with separate bypass capacitors at each supply pin.
Note 9: Typicals are at $T_{J}=T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {MCLK }}=24 \mathrm{MHz}$, and represent most likely parametric norm.
Note 10: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 11: Integral non-linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line that best fits the actual transfer function of the ADC.
Note 12: $\mathrm{V}_{\text {REF }}$ is defined as the CCD OS voltage for the reference period following the reset feedthrough pulse. $\mathrm{V}_{\text {WHITE }}$ is defined as the peak $C C D$ pixel output voltage for a white (full scale) image with respect to the reference level, $\mathrm{V}_{\text {REF }}$. $\mathrm{V}_{\mathrm{RFT}}$ is defined as the peak positive deviation above $\mathrm{V}_{\text {REF }}$ of the reset feedthrough pulse. The maximum correctable range of pixel-to-pixel $\mathrm{V}_{\text {WHITE }}$ variation is defined as the maximum variation in $\mathrm{V}_{\text {WHITE }}$ (due to PRNU, light source intensity variation, optics, etc.) that the LM9810/20 can correct for using its internal PGA.

AC Electrical Characteristics (Continued)

Note 13: PGA Gain Ergr is the maximum difference ${ }_{3}$ between the measured gain for any PGA code and the ideal gain calculated by using the formula Gain $_{\text {PGA }}\left(\frac{v}{v}\right)=G_{0}+X \frac{}{32}$ where $X=\left(G_{31}-G_{0}\right) \frac{32}{31}$.
Note 14: Full Channel INL and DNL are tested with CDS disabled, negative signal polarity, and a single OS input with a gain register setting of 1 (000001b) and an offset register setting of $0(000000 \mathrm{~b})$.
Note 15: The digital supply current (I_{D}) does not include the load, data and switching frequency dependent current required to drive the digital output bus on pins (D5-D0). The current required to switch the digital data bus can be calculated from: $I_{S W}=2 \times N_{d} \times P_{S w} \times C_{L} \times V_{D} / t_{S a m p C L K}$ where N_{d} is total number of data pins, $P_{s w}$ is the probability of each data bit switching, C_{L} is the capacitive loading on each data pin, V_{D} is the digital supply voltage and $t_{\text {SampCLK }}$ is the period of the SampCLK signal. Since N_{d} is $6, P_{S w}$ should be .5 and V_{D} is nominally 5 V , the switching current can usually be calculated from: $I_{S W}=30 \times C_{L} / t_{S a m p C L K}$. For example, if the capacitive load on each digital output pin (D5-D0) is 20 pF and the period of $\mathrm{t}_{\text {SampCLK }}$ is $1 / 6 \mathrm{MHz}$ or 167 ns , then the digital switching current would be 7.2 mA . The calculated digital switching current will be drawn through the V_{D} pin and should be considered as part of the total power budget for the LM9810/20.

Pin Descriptions

Analog Power	
$\mathrm{V}_{\text {A }}$	This is the positive supply pin for the analog supply. It should be connected to a voltage source of +5 V and bypassed to the AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor.
AGND	This is the ground return for the analog supply.
Analog I/O	
$\begin{aligned} & \mathrm{OS}_{\mathrm{R}}, \mathrm{OS}_{\mathrm{G}}, \\ & \mathrm{OS}_{\mathrm{B}} \end{aligned}$	Analog Inputs. These inputs (for Red, Green, and Blue) should be tied to the sensor's OS (Output Signal) through DC blocking capacitors.
RefBypass	Internally generated reference voltage bypass pin. It should be bypassed to AGND through a . $05 \mu \mathrm{~F}$ monolithic capacitor.
$\mathrm{V}_{\text {REF }}$, $V_{\text {REFMID }}$, $V_{\text {REF- }}$	Voltage reference bypass pins. They should each be bypassed to AGND through a $.05 \mu \mathrm{~F}$ monolithic capacitor.
Input \& Timing Control	
MCLK	Master Clock. The ADC conversion rate will be a maximum of $1 / 4$ of MCLK. Nominally 24 MHz .
SampCLK	Sample Clock. SampCLK controls the conversion rate of the ADC (up to $1 / 4$ of the MCLK rate) and sample timing. The signal level is sampled while SampCLK is low and held on the rising edge of SampCLK. When CDS is enabled, the falling edge of SampCLK causes the CCD reference level to be held. If CDS is not enabled, $\mathrm{V}_{\text {REF }}$, or $\mathrm{V}_{\text {REF- }}$ is held on the falling edge of SampCLK, depending on the programmed signal polarity. SampCLK is also used with NewLine to clamp the external coupling capacitors.

Pin Descriptions (Continued)

$\left.\begin{array}{|l|l|}\hline \text { NewLine } & \begin{array}{l}\text { New Line signal. Used to indicate the } \\ \text { start of active pixels on a new line, to } \\ \text { allow clamping of the AC coupling caps } \\ \text { and to allow programming of the } \\ \text { configuration register. When NewLine is } \\ \text { high and SampCLK is low, the OS } \\ \text { inputs will be connected to either V }\end{array} \\ \text { or VEF, } \\ \text { MCLK after NewLine goes low, the } \\ \text { internal mux and the offset and gain } \\ \text { settings will be set to the appropriate } \\ \text { values for the first color of the next line } \\ \text { set in the color mode setting in the } \\ \text { Sampler and Color Mode Register. } \\ \text { When NewLine is low, D transmit the } \\ \text { pixel conversion data from ADC. When } \\ \text { NewLine is high, D enter TRI-STATE } \\ \text { and D2, D1 and D0 act as a serial } \\ \text { interface for programming the } \\ \text { configuration registers. }\end{array}\right\}$

Pin Descriptions (Continued)

D1	b7, \quad b7, b1, b1 \quad b1 \quad b0, \quad b0
D0	b6, \quadInput Mode (NewLine High)
D5-D3	Don't Care
D2 (SCLK)	Serial Data Clock.
D1 (Latch)	Latch and Shift Enable Signal. When D1(Latch) is low, data is shifted into D0(SDI). When D1(Latch) goes high, the last nine bits shifted into D0(SDI) will be used to program the addressed configuration register. To avoid erroneous writes to the configuration registers, D1(Latch) should be pulled low when NewLine is high.
D0 (SDI)	Serial Input Data. Data is valid on D2(SCLK) rising edge. Three address bits followed by six data bits (MSB first) should be shifted into D0 before
D1(Latch) goes high.	

Timing Diagrams

FIGURE 1. Pixel Conversion Timing and Latency

FIGURE 2. SampCLK and Output Data Timing (NewLine Low)

Timing Diagrams (Continued)

FIGURE 3. Timing for Programming the Configuration Registers

FIGURE 4. CCD Clamping Timing

FIGURE 5. CDS Timing

Timing Diagrams (Continued)
TABLE 1. Configuration Register Address Table

Address	Address (Binary)			Data Bits					
	A2	A1	A0	B5	B4	B3	B3	B2	B1
0	0	0	0	Sampler and Color Mode					
				CDS	Polarity	N/A	Mode2	Mode1	Mode0
1	0	0	1	Red DAC Offset Setting					
				Polarity	MSB				LSB
2	0	1	0	Green DAC Offset Setting					
				Polarity	MSB				LSB
3	0	1	1	Blue DAC Offset Setting					
				Polarity	MSB				LSB
4	1	0	0	Red Gain Setting					
				x3	MSB				LSB
5	1	0	1	Green Gain Setting					
				x3	MSB				LSB
6	1	1	0	Blue Gain Setting					
				x3	MSB				LSB
7	1	1	1	Production Test and Power Down					
				Test	Test	Test	Test	Test	PD

TABLE 2. Configuration Register Parameters

Parameter (Address)	Control Bits			Result
Sampler and Color Mode (0)				
CDS Enable (0)	B5	CDS Enabled Single Ended (CDS disabled)		
	0			
	1			
Signal Polarity (0)	B4	Negative Polarity Positive Polarity		
	0			
	1			

Timing Diagrams
(Continued)
TABLE 2. Configuration Register Parameters (Continued)

Timing Diagrams (Continued)
TABLE 2. Configuration Register Parameters (Continued)

Parameter (Address)	Control Bits	Result

Red, Green and Blue Offset DAC Setting (1, 2 and 3)

Typical Offset Values (1, 2 \& 3)	$\begin{gathered} \hline \text { B5 } \\ \hline \text { (SIGN) } \end{gathered}$	$\begin{gathered} \hline \mathrm{B} 4 \\ \hline(\mathrm{MSB}) \end{gathered}$	B3	B2	B1	$\begin{gathered} \hline \text { B0 } \\ \hline(\mathrm{LSB}) \end{gathered}$	Typical Offset (with PGA Gain =1)	
							$\begin{gathered} \text { LM9810 } \\ \text { LSBs } \end{gathered}$	$\begin{gathered} \hline \text { LM9820 } \\ \text { LSBs } \end{gathered}$
	0	0	0	0	0	0	0.00	0.00
	0	0	0	0	0	1	+5	+20
	0	0	0	0	1	0	+10	+40
	\ldots	\ldots	...	\ldots	\ldots	\ldots	\ldots	...
	0	1	1	1	1	0	+150	+600
	0	1	1	1	1	1	+155	+620
	1	0	0	0	0	0	0	0
	1	0	0	0	0	1	-5	-20
	1	0	0	0	1	0	-10	-40
	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots
	1	1	1	1	1	0	-150	-600
	1	1	1	1	1	1	-155	-620

Red, Green and Blue Gains Settings (4, 5 and 6)

$\begin{aligned} & \text { Boost Gain } \\ & \text { Enable } \\ & (4,5 \text { and } 6) \end{aligned}$	B5	Boost Gain = 1V/V Boost Gain $=3 \mathrm{~V} / \mathrm{V}$					
	0						
	1						
PGA Gain Value (4, 5, and 6)	B4	B3	B2	B1	B0	PGA Gain (V/V $=.933+0.0667 \times($ PGA Gain Value)	
$\begin{gathered} \text { Gain } \\ (4,5 \text { and } 6) \end{gathered}$	Gain $=$ Boost Gain x PGA Gain						
Typical Gain Values (4, 5 and 6)	B5	B4	B3	B2	B1	B0	Typical Gain
	(x3)	(MSB)				(LSB)	(V/V)
	0	0	0	0	0	0	0.93
	0	0	0	0	0	1	1.00
	0	0	0	0	1	0	1.13
	\ldots						
	0	1	1	1	0	1	2.87
	0	1	1	1	1	0	2.93
	0	1	1	1	1	1	3.00
	\ldots	\ldots	...	\ldots	\ldots
	1	0	0	0	0	0	2.79
	1	0	0	0	0	1	3.00
	1	0	0	0	1	0	3.20
	\ldots						
	1	1	1	1	0	1	8.60
	1	1	1	1	1	0	8.80
	1	1	1	1	1	1	9.00
Production Test and Power Down (7)							
Production Test (7)	B5	B4	B3	B2	B1	Should all be set to zero for normal operation	
Power Down	B0			Normal Operation Power Down			
Enable (7)	$\begin{aligned} & 0 \\ & 1 \end{aligned}$						

Applications Information

1.0 PROGRAMMING THE LM9810/20

1.1 Writing to the Configuration Register

When NewLine is high, D2, D1 \& D0 act as a serial interface for writing to the configuration registers. D2 is the input serial clock (SCLK), D0 is the input data pin (SDI), and D1 is the latch and shift enable signal (Latch). When D 1 (Latch) is low, serial data is shifted into D0(SDI), and must be valid on each rising edge of D2(SDLK). Three register address bits followed by six data bits should be shifted into D0(SDI), MSB first. When D1(Latch) transitions from low to high, the last 6 data bits will be stored into the configuration register addressed by the previous 3 address bits (as shown in Figure 3). D1(Latch) must remain high for at least 3 cycles of the serial clock on D2(SCLK) to write to the configuration register.

1.2 CDS Mode

The LM9810/20 uses a high-performance CDS (Correlated Double Sampling) circuit to remove many sources of noise and error from the CCD signal. It also supports CIS image sensors with a single sampling mode.
Figure 6 shows the output stage of a typical CCD and the resulting output waveform:

FIGURE 6. CDS
Capacitor C1 converts the electrons coming from the CCD's shift register to an analog voltage. The source follower output stage (Q2) buffers this voltage before it leaves the CCD. Q1 resets the voltage across capacitor C1 between pixels at intervals 2 and 5 . When Q1 is on, the output signal (OS) is at its most positive voltage. After Q1 turns off (period 3), the OS level represents the residual voltage across C1 ($\mathrm{V}_{\text {Residual }}$). $\mathrm{V}_{\text {Residual }}$ includes charge injection from Q1, thermal noise from the ON resistance of Q1, and other sources of error. When the shift register clock ((1)) makes a low to high transition (period 4), the electrons from the next pixel flow into C1. The charge across C1 now contains the voltage proportional to the number of electrons plus $\mathrm{V}_{\text {RESIDUAL }}$, an error term. If OS is sampled at the end of period 3 and that voltage is subtracted from the OS at the end of period 4,
the $\mathrm{V}_{\text {Residual }}$ term is canceled and the noise on the signal is reduced ($-\mathrm{V}_{\text {REsidual }}=\mathrm{V}_{\text {SIGNAL }}$). This is the principal of Correlated Double Sampling.
If the LM9810/20 is programmed for correlated double sampling (bit B5 of register 0 is cleared), then the falling edge of SampCLK should occur toward the end of period 3 and the rising edge of SampCLK should occur towards the end of period 4. While SampCLK is high, the reference level ($\mathrm{V}_{\text {RESidual }}$) is sampled, and it is held at the falling edge of SampCLK. While SampCLK is low, the signal level ($\mathrm{V}_{\text {Signal }}+\mathrm{V}_{\text {REsidual }}$) is sampled and it is held at the rising edge of SampCLK. The output from the sampler is the potential difference between the two samples, or $V_{\text {Signal. }}$

1.3 CIS Mode

The LM9810/20 supports CIS (Contact Image Sensor) devices by offering a sampling mode for capturing positive going signals, as opposed to the CCD's negative going signal. The output signal of a CIS sensor (Figure 7) differs from a CCD signal in two primary ways: its output increases with increasing signal strength, and it does not usually have a reference level as an integral part of the output waveform of every pixel.

When the LM9810/20 is in CIS mode (Register 0, B5 = 1), it uses either $\mathrm{V}_{\text {REF+ }}$ or $\mathrm{V}_{\text {REF- }}$ depending on the signal polarity setting (B4 of the Sampling and Color Mode register) as the reference (or black) voltage for each pixel. If the signal polarity is set to one, then $\mathrm{V}_{\text {REF- }}$ will be held on the falling edge of SampCLK and the OS signal will be held on the rising edge of SampCLK. If it is set to zero, then $\mathrm{V}_{\text {REF+ }}$ will be held on the falling edge of SampCLK and the OS signal will be held on the rising edge of SampCLK. The rising edge of SampCLK should occur near the end of period 4, and at least 50 ns after the falling edge of SampCLK.

1.4 Multiplexer/Channel Switching

The offset and gain settings automatically switch after each ADC conversion according to the color mode setting in the Sampler and Color Mode register (register 0). For example, if the color mode (bits $\mathrm{B} 2, \mathrm{~B} 1$ and B 0) is set to 001, the offset and gain will alternately switch between the R, G and B settings after each conversion. The input multiplexer never changes during a line, but if the color mode is set to Line Rate Color (000), the mux will automatically switch after each new line.
The offset and gain settings will always start with the first channel of the programmed mode after a falling edge of

Applications Information (Continued)

NewLine. For example, the R offset and gain settings will be used for the first conversion following a falling edge on NewLine if the color mode is set to Single Input Color (001).

For the Single Input Color, Bayer and Green Stripe modes, the mux will always connect the OS_{B} input to the sampler. The offset and gain settings will alternate values every pixel according to the order indicated by the Sampler and Color Mode register (see Table 2). The first falling edge of NewLine following a write to the Sampler and Color Mode register will ready the offset and gain to cycle through the colors of the first line of the programmed color mode. Each subsequent falling edge of NewLine will switch the offset and gain settings to the first color of the next line. The LM9810/20's unused OS inputs should not be left unconnected. All three OS inputs should be tied together on the LM9810/20 side of the clamp capacitor (see Figure 8).

FIGURE 8. OS Connections for Signal Output Sensors
For the Line Rate Color mode, the mux will cycle through the $\mathrm{OS}_{\mathrm{R}}, \mathrm{OS}_{\mathrm{G}}$ and OS_{B} inputs after each falling edge of NewLine. The R, G and B offset and gain settings will be used when the mux is set to $\mathrm{OS}_{\mathrm{R}}, \mathrm{OS}_{\mathrm{G}}$ and OS_{B} input, respectively. OS_{R} and the R offset and gain settings will always be used on the first line following a write register 0 .

1.5 Data Latency

The latency through the LM9810/20 is a 8 SampCLK periods plus one MCLK period. The data output on D5 D0 (MSBs b11-b6 or b9-b4) represents data whose reference signal was sampled $8 \mathrm{t}_{\text {SampCLK }}+\mathrm{t}_{\text {MCLK }}+$ $\mathrm{t}_{\text {Sampsu }}$ earlier (See Figure 1).

1.6 Programmable Gain

The output of the Sampler drives the input of the x3 Boost gain stage. The gain of the $\times 3$ Boost gain is $3 \mathrm{~V} / \mathrm{V}$ if bit B5 of the current color's gain register (registers 4,5 and 6) is set, or $1 \mathrm{~V} / \mathrm{V}$ if bit B 5 is cleared. The output of the x 3 gain stage is the input to the offset DAC and the output of the offset DAC is the input to the PGA (Programmable Gain Amplifier). The PGA provides 5 bits of gain correction over a $0.93 \mathrm{~V} / \mathrm{V}$ to $3 \mathrm{~V} / \mathrm{V}(-0.6$ to 9.5 dB$)$ range. The x 3 Boost gain stage and the PGA can be combined for an overall gain range of $0.93 \mathrm{~V} / \mathrm{V}$ to $9.0 \mathrm{~V} / \mathrm{V}(-0.6$ to 19 dB$)$. The gain setting for each color (registers 4, 5 and 6) should be set during calibration to bring the maximum amplitude of the strongest pixel to a level just below the desired maximum output from the ADC. The PGA gain is determined by the following equation:

$$
\begin{equation*}
\text { PGA Gain }\left(\frac{V}{v}\right)=0.933+.0667 \text { (value in bits B4-BO) } \tag{1}
\end{equation*}
$$

If the $x 3$ Boost gain is enable then the overall signal gain will be three times the PGA gain.

1.7 Offset DAC

The Offset DAC removes the DC offsets generated by the sensor and the LM9810/20's analog signal chain (see section 1.7.1, Internal Offsets). The DAC value for each color (registers 1, 2 and 3) should be set during calibration to the lowest value that still results in an ADC output code greater than zero for all the pixels when scanning a black line. With a PGA gain of $1 \mathrm{~V} / \mathrm{V}$, each LSB of the offset DAC typically adds the equivalent of 5 LM9810 LSBs or 20 LM9820 LSBs, providing a total offset adjustment range of ± 150 LM9810 LSBs or ± 590 LM9820 LSBs. The Offset DAC's output voltage is given by:

$$
\begin{equation*}
V_{D A C}=9.75 \mathrm{mV} \times(\text { value in } B 4-B 0) \tag{2}
\end{equation*}
$$

In terms of output codes, the offset is given by:
Offset $=5$ LSBs \times (value in B4-B0) \times PGA Gain (3)
Offset $=20$ LSBs \times (value in B4-B0) \times PGA Gain (4)
The offset is positive if bit B5 is cleared and negative if B5 is set. Since the analog offset is added before the PGA gain, the value of the PGA gain must be considered when selecting the offset DAC values.

1.7.1 Internal Offsets

Figure 9 is a model of the LM9810/20's internal offsets. Equation (5) shows how to calculate the expected output code given the input voltage (V_{IN}), the LM9810/20 internal offsets ($\mathrm{V}_{\mathrm{OS} 1}, \mathrm{~V}_{\mathrm{OS} 2}, \mathrm{~V}_{\mathrm{Os} 3}$), the programmed offset DAC voltage ($\mathrm{V}_{\mathrm{DAC}}$), the programmed gains ($\mathrm{G}_{\mathrm{B}}, \mathrm{G}_{\mathrm{PGA}}$) and the analog channel gain constant C .
C is a constant that combines the gain error through the AFE, reference voltage variance, and analog voltage to digital code conversion into one constant. Ideally, C = 2048 codes/V (4096 codes/2V) for the LM9820 and 512 codes/V (1024 codes/2V) for the LM9810. Manufacturing tolerances widen the range of C (see Electrical Specifications).

FIGURE 9. Internal Offset Mode

$$
\begin{gather*}
\mathrm{D}_{\text {OUT }}=\left(\left(\left(\mathrm{V}_{\text {IN }}+\left(\mathrm{V}_{\mathrm{OS} 1}\right) \mathrm{G}_{\mathrm{B}}+\mathrm{V}_{\mathrm{DAC}}+\mathrm{V}_{\mathrm{OS} 2}\right) \mathrm{G}_{\mathrm{PGA}}+\right.\right. \\
\left.\mathrm{V}_{\mathrm{OS} 1}\right) \mathrm{C} \tag{5}
\end{gather*}
$$

Equation (6) is a simplification of the output code calculation, neglecting the LM9810/20's internal offsets.

$$
\begin{equation*}
\mathrm{D}_{\text {OUT }}=\left(\mathrm{V}_{\mathrm{IN}} \mathrm{G}_{\mathrm{B}}+\left(\mathrm{V}_{\mathrm{DAC}}\right) \mathrm{G}_{\mathrm{PGA}} \mathrm{C}\right. \tag{6}
\end{equation*}
$$

1.8 Power Down Mode

Setting the Power Down (bit BO of register 7) puts the device in a low power standby mode. The analog sections are turned off to conserve power. The digital logic will continue to operate if MCLK continues, so for minimum power dissipation MCLK should be stopped when the

Applications Information
 (Continued)

LM9810/20 enters the Power Down mode. Recovery from Power Down typically takes $50 \mu \mathrm{~s}$ (the time required for the reference voltages to settle to 0.5 LSB accuracy).

2.0 CLAMPING

To perform a DC restore across the AC coupling capacitors at the beginning of every line, the LM9810/20 implements a clamping function. When NewLine is high and SampCLK is low, all three OS inputs will be connected to either $\mathrm{V}_{\text {REF+ }}$ or $\mathrm{V}_{\text {REF- }}$, depending on B 4 of the Sampling and Color Mode register. If B4 is set to one (positive signal polarity), then the OS inputs will be connected to $\mathrm{V}_{\text {REF-. If }}$ If B4 is set to zero (negative signal polarity), then they will be connected to $\mathrm{V}_{\text {REF+ }+}$.

2.1 Clamp Capacitor Selection

This section explains how to select appropriate clamp capacitor values.

FIGURE 10. OS Clamp Capacitor and Internal Clamp
The output signal of many sensors rides on a DC offset (greater than 5 V for many CCDs) which is incompatible with the LM9810/20's 5 V operation. To eliminate this offset without resorting to additional higher voltage components, the output of the sensor is AC coupled to the LM9810/20 through a DC blocking capacitor, C CLAMP. The sensor's DOS output, if available, is not used. The value of this capacitor is determined by the leakage current of the LM9810/20's OS input and the output impedance of the sensor. The leakage through the OS input determines how quickly the capacitor value will drift from the clamp value of, $\mathrm{V}_{\text {REF+ }}$ or $\mathrm{V}_{\text {REF- }}$, which then determines how many pixels can be processed before the droop causes errors in the conversion ($\pm 0.1 \mathrm{~V}$ is the recommended limit for CDS operation). The output impedance of the sensor determines how quickly the capacitor can be charged to the clamp value during the black reference period at the beginning of every line.
The minimum clamp capacitor value is determined by the maximum droop the LM9810/20 can tolerate while converting one sensor line. The minimum clamp capacitor value is much smaller for CDS mode applications than it is for CIS mode applications. The LM9810/20 input leakage current is considerably less when the LM9810/20 is operating in CDS mode. In CDS mode, the LM9810/20 leakage current should be no more than 20 nA . With CDS disabled, which will likely be the case when CIS sensors are used, the LM9810/20 leakage current can be as high as $25 \mu \mathrm{~A}$ at the maximum conversion rate.

2.1.1 CDS Mode Minimum Clamp Capacitor Calculation

The following figure takes the maximum leakage current into the OS input, the maximum allowable droop, the number of pixels on the sensor, and the pixel conversion rate, $\mathrm{f}_{\text {SampCLk }}$, and provides the minimum clamp capacitor value:

$$
\begin{align*}
C_{\text {CLAMP MIN }} & =\frac{\mathrm{i}}{\mathrm{dV}} \mathrm{dt} \\
& =\frac{\text { leakage current }(\mathrm{A})}{\max \text { droop }(\mathrm{V})} \frac{\text { number of pixels }}{\mathrm{f}_{\text {SampCLK }}} \tag{7}
\end{align*}
$$

For example, if the OS input leakage current is 20 nA worst-case, the sensor has 2700 active pixels, the conversion rate is 2 MHz ($\mathrm{t}_{\text {sampCLK }}=500 \mathrm{~ns}$), and the max droop desired is 0.1 V , the minimum clamp capacitor value is:

$$
\begin{align*}
C_{\text {CLAMP MIN }} & =\frac{20 \mathrm{nA}}{0.1 \mathrm{~V}} \frac{2700}{2 \mathrm{MHz}} \\
& =270 \mathrm{pF} \tag{8}
\end{align*}
$$

2.1.2 CIS Mode Minimum Clamp Capacitor Calculation

If CDS is disabled, then the maximum LM9810/20 OS input leakage current can be calculated from:

$$
\begin{equation*}
\mathrm{I}_{\text {LEAKAGE }}=\mathrm{V}_{\text {SAT }} \mathrm{f}_{\text {SampCLK }} \mathrm{C}_{\text {SAMP }} \tag{9}
\end{equation*}
$$

where $\mathrm{V}_{\text {SAT }}$ is the peak pixel signal swing of the CIS OS output and $\mathrm{C}_{\text {SAMP }}$ is the capacitance of the LM9810/20's internal sampling capacitor (2 pF). Inserting this into Equation (7) results in:

$$
\begin{align*}
& C_{\text {CLAMP MIN }}=\frac{i}{d V} d t \\
& \quad=\frac{V_{\text {SAT }}}{t_{\text {SampCLK }}} C_{\text {SAMP }} \frac{t_{\text {SampCLK }}}{\max \operatorname{droop}(V)} \text { num pixels } \tag{10}
\end{align*}
$$

with $\mathrm{C}_{\text {SAMP }}$ equal to 2 pF and $\mathrm{V}_{\text {SAT }}$ equal to 2 V (the LM19810/20's maximum input signal), then Equation (10) reduces to:

$$
\begin{equation*}
C_{\text {CLAMP MIN }}=\frac{4 p(F)(V)}{\max \operatorname{droop}(V)} \text { num pixels } \tag{11}
\end{equation*}
$$

In CIS mode (CDS disabled), the max droop limit must be much more carefully chosen, since any change in the clamp capacitor's DC value will affect the LM9810/20's conversion results. If a droop of one 10-bit LSB across a line is considered acceptable, then the allowed droop voltage is calculated as $2 \mathrm{~V} / 1024$, or approximately 2 mV . If there are 2700 active pixels on a line then:

$$
\begin{align*}
\mathrm{C}_{\text {CLAMP MIN }} & =\frac{4 \mathrm{p}(\mathrm{~F})(\mathrm{V})}{2 \mathrm{mV}} 2700 \\
& =5.4 \mu \mathrm{~F} \tag{12}
\end{align*}
$$

2.1.3 Maximum Clamp Capacitor Calculation

The maximum size of the clamp capacitor is determined by the amount of time available to charge it to the desired value during the optical black portion of the sensor output. The internal clamp is on when NewLine is high and SampCLK is low. If the applied SampCLK is low for half its cycle, then the available charge time per line can be calculated using:

Applications Information (Continued)

$$
\begin{equation*}
{ }^{t} \text { CLAMP }=\frac{\text { Number of optical black pixels }}{2 f_{\text {SampCLK }}} \tag{13}
\end{equation*}
$$

For example, if a sensor has 18 black reference pixels and $\mathrm{f}_{\text {SampCLK }}$ is 2 MHz with a 50% duty cycle, then $\mathrm{t}_{\text {CLAMP }}$ is $4.5 \mu \mathrm{~s}$.
The following figure takes the number of optical black pixels, the amount of time (per pixel) that the clamp is closed, the sensor's output impedance, and the desired accuracy of the final clamp voltage and provides the maximum clamp capacitor value that allows the clamp capacitor to settle to the desired accuracy within a single line:

$$
\begin{align*}
\mathrm{C}_{\text {CLAMP MAX }} & =\frac{\mathrm{t}}{\mathrm{R} \ln (\text { accuracy })} \\
& =\frac{1}{t_{\text {CLAMP }}} \frac{1}{R_{\text {CLAMP }}} \frac{1}{\ln (\text { accuracy })} \tag{14}
\end{align*}
$$

Where $t_{\text {CLAMP }}$ is the amount of time (per line) that the clamp is on, $\mathrm{R}_{\text {CLAMP }}$ is the output impedance of the CCD plus 50Ω for the LM9810/20's internal clamp switch, and accuracy is the ratio of the worst-case initial capacitor voltage to the desired final capacitor voltage. If $\mathrm{t}_{\text {CLAMP }}$ is $4.5 \mu \mathrm{~s}$, the output impedance of the sensor is 1500Ω, the worst case voltage change required across the capacitor (before the first line) is 5 V , and the desired accuracy after clamping is to within 0.1 V (accuracy $=5 / 0.1=50$), then:

$$
\begin{align*}
\mathrm{C}_{\text {CLAMP MAX }} & =\frac{4.5 \mu \mathrm{~s}}{1550 \Omega} \frac{1}{\ln (50)} \\
& =728 \mathrm{pF} \tag{15}
\end{align*}
$$

The final value for $\mathrm{C}_{\text {CLAMP }}$ should be less than or equal to $\mathrm{C}_{\text {CLAMP max, }}$ but no less than $\mathrm{C}_{\text {CLAMP min }}$.
In some cases, depending primarily on the choice of sensor, $\mathrm{C}_{\text {CLAMP max }}$ may actually be less than $\mathrm{C}_{\text {CLAMP }}$ min, meaning that the capacitor can not be charged to its final voltage during the black pixels at the beginning of a line and hold its voltage without drooping for the duration of that line. This is usually not a problem because in most applications the sensor is clocked continuously as soon as power is applied. In this case, a larger capacitor can be used (guaranteeing that the $\mathrm{C}_{\text {CLAMP MIN }}$ requirement is met), and the final clamp voltage is forced across the capacitor over multiple lines. This equation calculates how many lines are required before the capacitor settles to the desired accuracy:

$$
\begin{equation*}
\text { lines }=\left(R_{\text {CLAMP }} \frac{C_{C L A M P}}{t_{\text {CLAMP }}}\right) \ln \left(\frac{\text { Initial Error Voltage }}{\text { Final Error Voltage }}\right) \tag{16}
\end{equation*}
$$

Using the values shown before and a clamp capacitor value of $0.01 \mu \mathrm{~F}$, this works out to be:

$$
\begin{equation*}
\text { lines }=\left(1550 \frac{0.01 \mu \mathrm{~F}}{4.5 \mu \mathrm{~s}}\right) \ln \left(\frac{5 \mathrm{~V}}{0.1 \mathrm{~V}}\right)=13.5 \text { lines } \tag{17}
\end{equation*}
$$

In this example, a $0.01 \mu \mathrm{~F}$ capacitor takes 14 lines after power-up to charge to its final value. On subsequent lines, the only error will be the droop across a single line which should be significantly less than the initial error. If the LM9810/20 is operating in CDS mode and multiple lines are used to charge up the clamping capacitors
after power-up, then a clamp capacitor value of 0.01 $\mu \mathrm{F}$ should be significantly greater than the calculated $\mathrm{C}_{\text {clamp min }}$ value and can virtually always be used. If the LM9810/20 is operating in CIS mode, then significantly larger clamp capacitors must be used. Fortunately, the output impedance of most CIS sensors is significantly smaller than the output impedance of CCD sensors, and $\mathrm{R}_{\text {CLAMP }}$ will be dominated by the 50Ω from the LM9810/ 20's internal clamp switch. With a smaller R $\mathrm{Clamp}_{\text {value, }}$ the clamp capacitors will charge faster.

3.0 PERFORMANCE CONSIDERATIONS

3.1 Power Supply

The LM9810/20 should be powered by a single +5 V source. The analog supplies $\left(\mathrm{V}_{\mathrm{A}}\right)$ and the digital supply $\left(\mathrm{V}_{\mathrm{D}}\right)$ are brought out individually to allow separate bypassing for each supply input. They should not be powered by two or more different supplies.
In systems with separate analog and digital +5 V supplies, all the supply pins of the LM9810/20 should be powered by the analog +5 V supply. Each supply input should be bypassed to its respective ground with a $0.1 \mu \mathrm{~F}$ capacitor located as close as possible to the supply input pin. A single $10 \mu \mathrm{~F}$ tantalum capacitor should be placed near the V_{A} supply pin to provide low frequency bypassing.
To minimize noise, keep the LM9810/20 and all analog components as far as possible from noise generators, such as switching power supplies and high frequency digital busses. If possible, isolate all the analog components and signals (OS, reference inputs and outputs, V_{A}, AGND) on an analog ground plane, separate from the digital ground plane. The two ground planes should be tied together at a single point, preferably the point where the power supply enters the PCB.

3.2 SampCLK Timing

SampCLK is used to time the stages of the LM9810/20's sampler, offset DAC and programmable gain amplifier. To allow for optimum input signal sampling times, SampCLK may be applied asynchronously to MCLK. The LM9810/ 20's ADC is synchronized with the AFE (including the sampler, the offset DAC and the PGA) by MCLK.
The LM9810/20's internal ADC clock is created through a combination of the applied SampCLK and MCLK signals. MCLK is used to synchronize the applied SampCLK signal. The internal ADC clock will go low after the falling edge of SampCLK is clocked by a rising of MCLK. The ADC clock will stay low for two MCLK cycles and then go high. It will stay high until the next falling edge of SampCLK is clocked by MCLK. Figure 11 illustrates this SampCLK, MCLK, and ADC clock timing relationship.

FIGURE 11. LM9810/20 Relative Event Timing
The LM9810/20 is a densely designed, mixed-signal, monolithic semiconductor. In creating the timing for the LM9810/20, it must be considered that internal events,

Applications Information (Continued)

such as ADC sampling, and output data bus switching can potentially affect coincident events such as input signal sampling or offset DAC settling. One event can interfere with another by coupling noise on shared resources such as the supply lines, internal voltage references, or the silicon substrate.
To optimize the performance of the LM9810/20, SampCLK should be timed so that the input signal hold times do not coincide with output data switching and ADC clock transitions. In other words, the rising and falling edges of SampCLK should not be placed close to ADC clock edges
or to output data transitions. SampCLK edges should be at least 20 ns away from ADC clock edges to avoid interference between the ADC and the sampler. SampCLK edges should also be placed at least 40 ns after output data transition times to avoid transition noise coupling.
Figure 11 is an example of SampCLK timing that will meet these requirements at the maximum MCLK frequency of 24 MHz . In Figure 11, SampCLK transitions occur on MCLK falling edges which will keep them more than 20 ns away from ADC transitions, and 40 ns after output data transitions.

Physical Dimensions inches (mililimeters) unless otherwise noted

20-Pin (.300" Wide) Molded Small Outline Package

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
\quad Email: support@nsc.com
www.national.com
[^0]National Semiconductor

Asia Pacific Customer

Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: ap.support@nsc.com

National Semiconductor Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507
www.national.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI . Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	TI E2E Commu	y Home Page	e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

[^0]: National Semiconductor Europe

 Fax: +49 (0) 180-530 8586 Email: europe.support@nsc.com
 Deutsch Tel: +49 (0) 6995086208
 English Tel: +44 (0) 8702402171
 Français Tel: +33 (0) 141918790

