

LMC6008 **8 Channel Buffer**

General Description

The LMC6008 octal buffer is designed specifically to buffer the multi-level voltages going to the inputs of the integrated circuits. The LMC6008 AC characteristics, including settling time, are specified for a capacitive load of 0.1 μF for this reason.

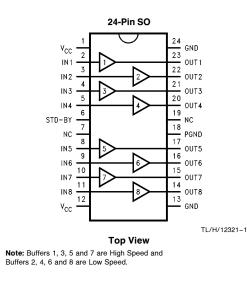
The LMC6008 contains 4 high-speed buffers and 4 lowpower buffers. The high-speed buffers can provide an output current of at least 250 mA (minimum), and the low-power buffers can provide at least 150 mA (minimum). By including the 2 types of buffers, the LMC6008 is able to provide this function while consuming a supply current of only 6.5 mA (maximum). The buffers are a rail-to-rail design, which typically swing to within 30 mV of either supply.

The LMC6008 also contains a standby function which puts the buffer into a high-impedance mode. The supply current in the standby mode is a low 500 μA max. Also, a thermal limit circuit is included to protect the device from overload conditions.

Features

High Output Current:	
High Speed Buffers	250 mA min
Low Power Buffers	150 mA min
Slew Rate:	
High Speed Buffers	1.7 V/μs
Low Power Buffers	0.85V/µs
Settling Time, $C_L = 0.1 \ \mu F$	16 μs max
Wide Input/Output Range	0.1V to V _{CC} $-$ 0.1V min
 Supply Voltage Range 	5V to 16V
 Supply Current 	6.5 mA max
 Standby Mode Current 	500 μA

Applications


- AMLCD voltage buffering
- Multi-voltage buffering

Ordering Information

Package	Temperature Range - 40°C to + 85°C	NSC Drawing	Transport Media
	LMC6008IM	M24B	Rail
Surface Mount	LMC6008IMX	M24B	Tape & Reel

Connection Diagram

© 1996 National Semiconductor Corporation

TL/H/12321

RRD-B30M56/Printed in U. S. A.

LMC6008

April 1996

8 Channel Buffer

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ESD Tolerance (Note 2) 2000V

Office/Distributors for availab	ility and specifications.
ESD Tolerance (Note 2)	2000V
Voltage at Input Pin	V^+ + 0.4V, V^- - 0.4V
Voltage at Output Pin	V^+ + 0.4V, V^- - 0.4V
Supply Voltage (V $^+$ – V $^-$)	16V
Lead Temperature	

Operating Ratings (Note 1)

Supply Voltage	$4.5V \leq V^+ \leq 16V$
Temperature Range	-20° C to $+100^{\circ}$ C
Thermal Resistance (θ _{JA}) Μ Package, 24-Pin Surface Mount	50°C/W

DC Electrical Characteristics

(soldering, 10 sec.)

Storage Temperature Range

Power Dissipation (Note 4)

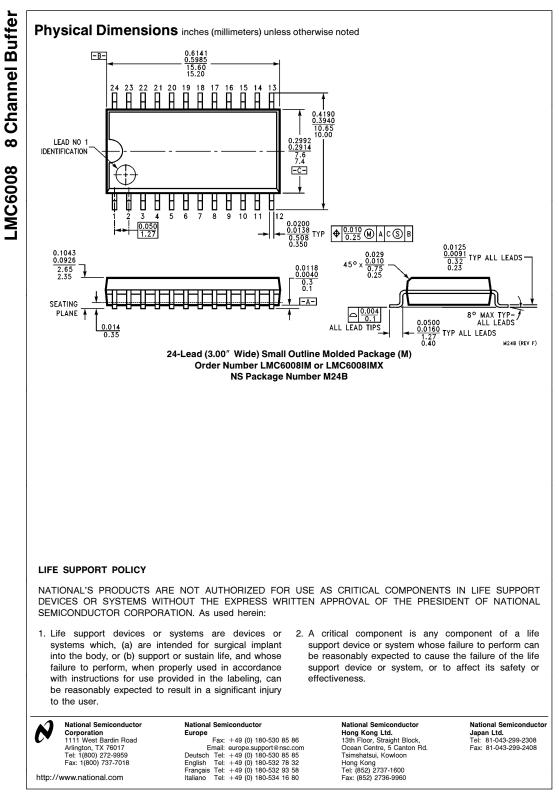
Junction Temperature (Note 4)

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V_{CC} = 14.5V and R_L = 0.

260°C

150°C

-55°C to +150°C


Internally Limited

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6008 Limit (Note 6)	Units
V _{OS}	Input Offset Voltage	$R_{S} = 10 k\Omega$		25	mV max
A _V	$V_{O} = 10 V_{PP}$			0.985	V/V
I _B	Input Bias Current			300	nA max
I _{LP}	Peak Load Current	Hi Speed Buffers		-250	mA max
		V _O = 13 V _{PP}		+ 250	mA min
I _{LP}	Peak Load Current	Lo Speed Buffers		-150	mA max
		V _O = 13 V _{PP}		+ 150	mA min
V _{ERR}	Output Voltage Difference (Note 9)		35		mV max
V _{IH}	Standby Logic HIgh Voltage			3.30	V min
V _{IL}	I _{STANDBY} Logic Low Voltage			1.80	V max
I _{IH}	Standby High Input Current			1.0	μA max
۱ _{IL}	Standby Low Input Current			1.0	μA max
IO (STD-BY)	Output Leakage Current	$V_{STD-BY} = High$		5	μA max
ICC	Supply Current	$V_{IL} = Low, V_{IN} = 7.25V$		6.5	mA max
I _{STD-BY}	Standby Current	V _{STD-BY} = High		500	μA max
PSRR	Power Supply Rejection Ratio	$5V < V_{CC} < 14.5V$		55	dB min
Vo	Voltage Output Swing			0.1	V min
				V _{CC} - 0.1	V max

http://www.national.com

CL Standby PBW Power Ba CL Load Cap Note 1: Absolute Maximum Ratended to be functional, but stated to be functional, but stated to be functional, but states are rise to bate 4: The maximum power bate 4: The maximum power bate 4: The maximum power bate 5: Typical Values represented to be 5: Typical Values represented to be 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and 5.5V for buffers 1, 3, 5,	Time y Response Time ON y Response Time OFF Bandwidth apacitance Ratings indicate limits beyond w t specific performance is not gu 1.5 kΩ in series with 100 pF. connection of a 0.1 μ F capaci er dissipation is a function of here the junction-to-ambient the imperature to approximately 16 sent the most likely parametric eed by testing or statistical ana neasured from the input transiti nd 3.75V to 10.25V for buffers 2 are 1, 3, 5, 7 and Low-Speed B	$T_{J(max)}$, θ_{JA} , and T_A . The maximum a rmal resistance $\theta_{JA} = 50^{\circ}$ C/W. If the ma lo ^o C. All numbers apply for packages solo norm. alysis. on to a point 50 mV of the final value, for 2, 4, 6, 8. Input rise time should be less to	and the test condition llowable power dissij ximum allowable pow lered directly into a F both rising and falling han 1 µs.	ns, see the Electrical pation at any ambier ver dissipation is excer 2C board. g transitions. The inpu	Characteristics. It temperature i eded, the therma t swing is 0.5V t
CL Standby tON Standby tOFF Standby PBW Power Ba CL Load Cap Note 1: Absolute Maximum Rate Antended to be functional, but state Intended to be functional, but state Standby model, 1 Note 2: Human body model, 1 State a series of the maximum power Iote 4: The maximum power Cap (JA, whe mit circuit will limit the die term Iote 5: Typical Values repressione Note 6: All limits are guarantee Iote 6: All limits are guarantee Stor for buffers 1, 3, 5, 7 and Stor for buffers 1, 3, 5, 7 and Note 8: High-Speed Buffers and	y Response Time ON y Response Time OFF Bandwidth apacitance Ratings indicate limits beyond w t specific performance is not gu 1.5 k Ω in series with 100 pF. connection of a 0.1 μ F capaci er dissipation is a function of here the junction-to-ambient the imperature to approximately 16 sent the most likely parametric eed by testing or statistical am easured from the input transiti d 3.75V to 10.25V for buffers 2 are 1, 3, 5, 7 and Low-Speed B	(Notes 3, 7) $V_O = 10 V_{PP}$ for Hi-Speed $V_O = 5 V_{PP}$ for Lo-Speed (Note 3) which damage to the device may occur. (Jaranteed. For guaranteed specifications itor and a 1Ω resistor. T _{J(max)} , θ_{JA} , and T _A . The maximum a site and a 1Ω resistor. T _{J(max)} , θ_{JA} , and T _A . The maximum a main resistance $\theta_{JA} = 50^{\circ}$ C/W. If the ma 0° C. All numbers apply for packages sole norm. alysis. on to a point 50 mV of the final value, for 2, 4, 6, 8. Input rise time should be less to Buffers are 2, 4, 6, 8.	and the test condition llowable power dissij ximum allowable pow lered directly into a F both rising and falling han 1 µs.	16 10 10 45 0.1 cate conditions for when some the Electrical pation at any ambier ver dissipation is excerved board. g transitions. The input some the source of the source o	μs max μs max μs max μs max KHz min μF max nich the device i Characteristics.
CL Standby tON Standby tOFF Standby PBW Power Ba CL Load Cap Note 1: Absolute Maximum Rate Antended to be functional, but state Intended to be functional, but state Standby model, 1 Note 2: Human body model, 1 State a series of the maximum power Iote 4: The maximum power Cap (JA, whe mit circuit will limit the die term Iote 5: Typical Values repressione Note 6: All limits are guarantee Iote 6: All limits are guarantee Stor for buffers 1, 3, 5, 7 and Stor for buffers 1, 3, 5, 7 and Note 8: High-Speed Buffers and	y Response Time ON y Response Time OFF Bandwidth apacitance Ratings indicate limits beyond w t specific performance is not gu 1.5 k Ω in series with 100 pF. connection of a 0.1 μ F capaci er dissipation is a function of here the junction-to-ambient the imperature to approximately 16 sent the most likely parametric eed by testing or statistical am easured from the input transiti d 3.75V to 10.25V for buffers 2 are 1, 3, 5, 7 and Low-Speed B	$V_{O} = 10 \text{ Vpp for Hi-Speed}$ $V_{O} = 5 \text{ Vpp for Lo-Speed}$ (Note 3) which damage to the device may occur, 0 Jaranteed. For guaranteed specifications itor and a 1\Omega resistor. $T_{J(max)}, \theta_{JA}, \text{ and } T_{A}. \text{ The maximum a}$ arrmal resistance $\theta_{JA} = 50^{\circ}C/W.$ If the ma 0°C. All numbers apply for packages sold norm. alysis. To no to a point 50 mV of the final value, for 2, 4, 6, 8. Input rise time should be less to Buffers are 2, 4, 6, 8.	and the test condition llowable power dissij ximum allowable pow lered directly into a F both rising and falling han 1 µs.	10 10 45 0.1 cate conditions for wins, see the Electrical pation at any ambier	μs max μs max μs max KHz min μF max mich the device i Characteristics.
CL Standby PBW Power Ba CL Load Cap Note 1: Absolute Maximum Ratended to be functional, but stated to be functional, but stated to be functional, but states are rise to bate 4: The maximum power bate 4: The maximum power bate 4: The maximum power bate 5: Typical Values represented to be 5: Typical Values represented to be 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and to bate 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and 5.5V for buffers 1, 3, 5,	y Response Time OFF Bandwidth apacitance Ratings indicate limits beyond w t specific performance is not gu 1.5 kΩ in series with 100 pF. connection of a 0.1 μF capaci er dissipation is a function of nere the junction-to-ambient the imperature to approximately 16 sent the most likely parametric eed by testing or statistical ana neasured from the input transiti nd 3.75V to 10.25V for buffers a are 1, 3, 5, 7 and Low-Speed B	$\label{eq:VO} \begin{split} V_O &= 5 \ \text{Vpp for Lo-Speed} \\ (\text{Note 3}) \end{split}$ which damage to the device may occur, 0 Jaranteed. For guaranteed specifications liter and a 1 \$\Omega\$ resistor. T_{J(max)}, \$\theta_{JA}\$, and \$T_A\$. The maximum a small resistance \$\theta_{JA}\$ = 50°C/W. If the maxio'C. All numbers apply for packages sole norm. alysis. on to a point 50 mV of the final value, for 2, 4, 6, 8. Input rise time should be less to Buffers are 2, 4, 6, 8.	and the test condition llowable power dissij ximum allowable pow lered directly into a F both rising and falling han 1 µs.	10 45 0.1 cate conditions for wh ns, see the Electrical pation at any ambier rer dissipation is excer 2C board.	μs max KHz min μF max hich the device i Characteristics. It temperature i eded, the therma t swing is 0.5V t
Standby PBW Power Ba CL Load Cay Note 1: Absolute Maximum Ratended to be functional, but stated to be functional, but stated at Human body model, 1 Note 3: The Load is a series of the sate state s	Bandwidth apacitance Ratings indicate limits beyond w t specific performance is not gu 1.5 kΩ in series with 100 pF. connection of a 0.1 μ F capaci er dissipation is a function of here the junction-to-ambient the amperature to approximately 16 sent the most likely parametric eed by testing or statistical ana neasured from the input transiti hd 3.75V to 10.25V for buffers 2 are 1, 3, 5, 7 and Low-Speed B	$\label{eq:VO} \begin{split} V_O &= 5 \ \text{Vpp for Lo-Speed} \\ (\text{Note 3}) \end{split}$ which damage to the device may occur, 0 Jaranteed. For guaranteed specifications liter and a 1 \$\Omega\$ resistor. T_{J(max)}, \$\theta_{JA}\$, and \$T_A\$. The maximum a small resistance \$\theta_{JA}\$ = 50°C/W. If the maxio'C. All numbers apply for packages sole norm. alysis. on to a point 50 mV of the final value, for 2, 4, 6, 8. Input rise time should be less to Buffers are 2, 4, 6, 8.	and the test condition llowable power dissij ximum allowable pow lered directly into a F both rising and falling han 1 µs.	45 0.1 cate conditions for wh ns, see the Electrical pation at any ambier ver dissipation is excer C board.	KHz min μF max nich the device i Characteristics. nt temperature i eded, the therma t swing is 0.5V t
PBW Power B: CL Load Cap lote 1: Absolute Maximum R: Antended to be functional, but 3: htended to be functional, but 3: Stote 2: Human body model, 1 lote 3: The Load is a series of Iolet 4: The maximum power bot (T _J (max) - T _A)/θ _J A, when mit circuit will limit the die ten lote 5: Typical Values repress Iolet 6: All limits are guaranter lote 7: The settling time is ms 3.5V for buffers 1, 3, 5, 7 and lote 8: High-Speed Buffers ar Suffers and	apacitance Ratings indicate limits beyond w t specific performance is not gu 1.5 kΩ in series with 100 pF. connection of a 0.1 μF capaci er dissipation is a function of here the junction-to-ambient the perperature to approximately 16 sent the most likely parametric eed by testing or statistical ana neasured from the input transiti hd 3.75V to 10.25V for buffers 2 are 1, 3, 5, 7 and Low-Speed B	$\label{eq:VO} \begin{split} V_O &= 5 \ \text{Vpp for Lo-Speed} \\ (\text{Note 3}) \end{split}$ which damage to the device may occur, 0 Jaranteed. For guaranteed specifications liter and a 1 \$\Omega\$ resistor. T_{J(max)}, \$\theta_{JA}\$, and \$T_A\$. The maximum a small resistance \$\theta_{JA}\$ = 50°C/W. If the maxio'C. All numbers apply for packages sole norm. alysis. on to a point 50 mV of the final value, for 2, 4, 6, 8. Input rise time should be less to Buffers are 2, 4, 6, 8.	and the test condition llowable power dissij ximum allowable pow lered directly into a F both rising and falling han 1 µs.	0.1 cate conditions for wh ns, see the Electrical pation at any ambier ver dissipation is excer C board.	μF max nich the device i Characteristics. nt temperature i eded, the therma t swing is 0.5V t
lote 1: Absolute Maximum Rational between the absolute Maximum Rational, but is thended to be functional, but is lote 2: Human body model, 1 lote 3: The Load is a series of lote 4: The maximum power $p_D = (T_{J(max)} - T_A)/\theta_{JA}$, whe mit circuit will limit the die ten bit for 5: Typical Values repressione 6: All limits are guarantee lote 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and lote 8: High-Speed Buffers are	Ratings indicate limits beyond w t specific performance is not gu 1.5 kΩ in series with 100 pF. connection of a 0.1 μ F capaci er dissipation is a function of nere the junction-to-ambient the amperature to approximately 16 sent the most likely parametric eed by testing or statistical ana neasured from the input transiti nd 3.75V to 10.25V for buffers 2 are 1, 3, 5, 7 and Low-Speed B	Jaranteed. For guaranteed specifications itor and a 1 Ω resistor. T _J (max), θ_{JA} , and T _A . The maximum a armal resistance $\theta_{JA} = 50^{\circ}$ C/W. If the ma 10°C. All numbers apply for packages solo norm. alysis. on to a point 50 mV of the final value, for 2, 4, 6, 8. Input rise time should be less to Buffers are 2, 4, 6, 8.	and the test condition llowable power dissij ximum allowable pow lered directly into a F both rising and falling han 1 µs.	cate conditions for when reading the conditions for when pation at any ambier ver dissipation is excert C board.	nich the device i Characteristics. Int temperature i eded, the therma t swing is 0.5V t
Intended to be functional, but is lote 2: Human body model, 1 lote 3: The Load is a series of lote 4: The maximum power $p = (T_J(max) - T_A)/\theta_{AA}$, whe mit circuit will limit the die ten lote 5: Typical Values repress. lote 6: All limits are guaranter lote 7: The settling time is me 3.5V for buffers 1, 3, 5, 7 and lote 8: High-Speed Buffers an	t specific performance is not gu 1.5 k Ω in series with 100 pF. connection of a 0.1 μ F capaci er dissipation is a function of here the junction-to-ambient the imperature to approximately 16 sent the most likely parametric eed by testing or statistical and heasured from the input transitiv d 3.75V to 10.25V for buffers a are 1, 3, 5, 7 and Low-Speed B	Jaranteed. For guaranteed specifications itor and a 1 Ω resistor. T _J (max), θ_{JA} , and T _A . The maximum a armal resistance $\theta_{JA} = 50^{\circ}$ C/W. If the ma 10°C. All numbers apply for packages solo norm. alysis. on to a point 50 mV of the final value, for 2, 4, 6, 8. Input rise time should be less to Buffers are 2, 4, 6, 8.	and the test condition llowable power dissij ximum allowable pow lered directly into a F both rising and falling han 1 µs.	ns, see the Electrical pation at any ambier ver dissipation is excer 2C board. g transitions. The inpu	Characteristics. It temperature i eded, the therma t swing is 0.5V t

http://www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.