

LT1118/LT1118-2.5 LT1118-2.85/LT1118-5

Low I_Q, Low Dropout, 800mA, Source and Sink Regulators Adjustable and Fixed 2.5V, 2.85V, 5V Output

FEATURES

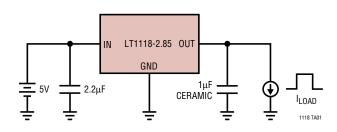
- Regulates While Sourcing or Sinking Current
- Provides Termination for up to 27 SCSI Lines
- 600µA Quiescent Current
- Ultra-Low Power Shutdown Mode
- Current Limit and Thermal Shutdown Protection
- Stable for Any $C_{LOAD} \ge 0.22 \mu F$
- Fast Settling Time
- 1V Dropout Voltage

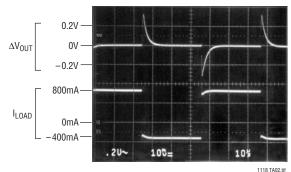
APPLICATIONS

- Active Negation SCSI Terminations
- Computers
- Disk Drives
- CD-ROM
- Supply Splitter

DESCRIPTION

The LT®1118 family of low dropout regulators has the unique capability of maintaining output regulation while sourcing or sinking load current. The 2.85V output voltage regulator is ideal for use as a Boulay termination of up to 27 SCSI data lines. The regulator maintains regulation while both sourcing and sinking current, enabling the use of active negation drivers for improved noise immunity on the data lines. Regulation of output voltage is maintained for TERMPWR voltages as low as 4.0V. When unloaded, quiescent supply current is a low $600\mu\text{A}$, allowing continuous connection to the TERMPWR lines. An ultralow power shutdown mode is also available on the SO-8 version. In Shutdown the output is high impedance and supply current drops to less than $10\mu\text{A}$.

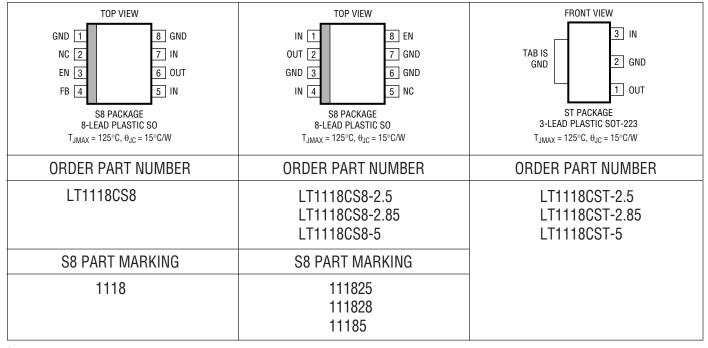

Current limits in both sourcing and sinking modes, plus on-chip thermal shutdown make the circuit tolerant of output fault conditions.


The LT1118 is available in 3-lead SOT-223 and 8-lead SO packages.

17, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Load Transient Response


IIIO IAU

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (V _{CC})	15V
	0.2V to 7V
Output Voltage	$-0.2V$ to $V_{CC} + 0.5V$
Short-Circuit Duration	Indefinite

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS (Note 2)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
Quiescent Current (V _{IN})		V _{EN} = 5V	•		0.6	1	mA
Quiescent Current in Shutdow	n (V _{IN})	V _{EN} = 0V	•		1	10	μА
Enable Input Thresholds		Input Low Level Input High Level	•	0.4	1.4 1.4	2	V
Enable Input Current		$0V \le V_{EN} \le 5V$	•	-1		25	μА
Output Voltage	LT1118-2.5	No Load (25°C) All Operating Conditions (Note 3)	•	2.47 2.45	2.5 2.5	2.53 2.55	V
	LT1118-2.85	No Load (25°C) All Operating Conditions (Note 3)	•	2.82 2.79	2.85 2.85	2.88 2.91	V
	LT1118-5	No Load (25°C) All Operating Conditions (Note 3)	•	4.95 4.90	5 5	5.05 5.1	V
Line Regulation (Note 4)	LT1118-2.5 LT1118-2.85 LT1118-5	$\begin{split} I_L &= 0 \text{mA}, \ 4.2 \text{V} \leq \text{V}_{\text{IN}} \leq 15 \text{V} \\ I_L &= 0 \text{mA}, \ 4.75 \text{V} \leq \text{V}_{\text{IN}} \leq 15 \text{V} \\ I_L &= 0 \text{mA}, \ 6.5 \text{V} \leq \text{V}_{\text{IN}} \leq 15 \text{V} \end{split}$	•			6 6 10	mV mV mV

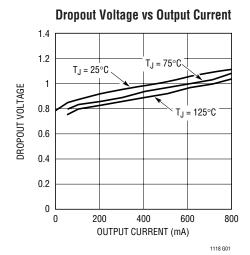
ELECTRICAL CHARACTERISTICS (Note 2)

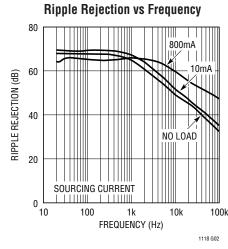
PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
Load Regulation (Note 4)	LT1118-2.5	$0\text{mA} \le I_L \le 800\text{mA} \\ -400\text{mA} \le I_L \le 0\text{mA}$	•			10 10	mV mV
	LT1118-2.85	$0\text{mA} \le I_L \le 800\text{mA} \\ -400\text{mA} \le I_L \le 0\text{mA}$	•			10 10	mV mV
	LT1118-5	$0\text{mA} \le I_L \le 800\text{mA} \\ -400\text{mA} \le I_L \le 0\text{mA}$	•			25 25	mV mV
Dropout Voltage (Note 5)		I _L = 100mA I _L = 800mA			0.85 1	1.1 1.3	V
Minimum Output Voltage	LT1118		•			2	V
Ripple Rejection		$f_{RIPPLE} = 120Hz, V_{IN} - V_{OUT} = 2V$ $V_{RIPPLE} = 0.5V_{P-P}$		60	80		dB
Load Transient Settling Time, $\Delta V = 1\%$		$0\text{mA} \le I_L \le 800\text{mA}, C_{L0AD} = 1\mu\text{F} \\ -400\text{mA} \le I_L \le 0\text{mA}, C_{L0AD} = 1\mu\text{F}$			5 5		μs μs
Output Short-Circuit Current	I _{SC} + I _{SC} -	$V_{OUT} = 0V$ $V_{OUT} = V_{IN}$		800	1200 -700	-400	mA mA
Thermal Shutdown Junction Ter	nperature	No Load			170		°C
Enable Turn-On Delay		No Load			50		μS

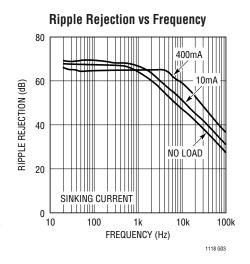
The lacktriangle denotes specifications which apply over the operating temperature range.

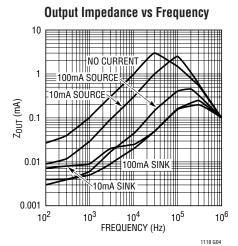
Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.

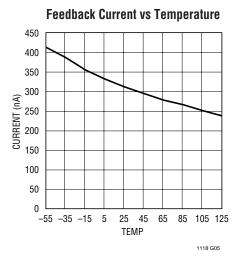
Note 2: Unless otherwide specified, testing done at V_{CC} = 5V (LT1118-2.5, LT1118-2.85) or V_{CC} = 7V (LT1118-5). V_{EN} = V_{CC}. Output C_{LOAD} = 1 μ F, I_{LOAD} = 0.

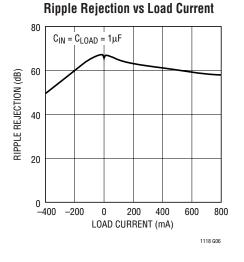

Note 3: All operating conditions include the combined effects of load current, input voltage and temperature over each parameter's full range.

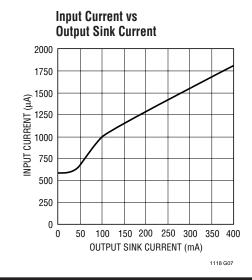

Note 4: Load and line regulation are tested at a constant junction temperature by low duty cycle pulse testing.

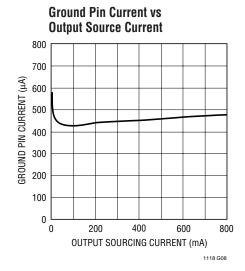

Note 5: Dropout voltage is defined as the minimum input to output voltage measured while sourcing the specified current.




TYPICAL PERFORMANCE CHARACTERISTICS



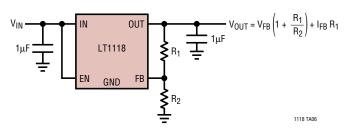




PIN FUNCTIONS

IN: Input Supply Pin. This pin should be decoupled with a $1\mu F$ or larger low ESR capacitor. The two IN pins on the SO-8 package must be directly connected on the printed circuit board to prevent voltage drops between the two inputs. When used as a SCSI active termination, IN connects to term power. When used as a supply splitter, IN is also the positive supply output.

GND: Ground Pin. The multiple GND pins on the SO-8 package are internally connected, but lowest load regulation errors will result if these pins are tightly connected on the printed circuit board. This will also aid heat dissipation at high power levels.


EN: TTL/CMOS Logic Input. A high level allows normal operation. A low level reduces supply current to zero. This pin is internally connected to V_{IN} on 3-lead ST packaged devices.

OUT: Regulated Output Voltage. Output can source or sink current. Current limit for sourcing and sinking current is provided to protect the device from fault conditions. The output must have a low ESR output filter capacitor. $C_{OUT} \geq 0.22 \mu F$ to guarantee stability. A $0.1 \mu F$ ceramic capacitor may be needed in parallel with C_{OUT} if the ESR of the main C_{OUT} is too high.

FB: Feedback Pin. The feedback pin is used to program the output voltage of the adjustable S8 part. The output voltage is determined by the selection of feedback resistors defined by the following formula:

$$V_{OUT} = V_{FB} (1 + R_1/R_2) + I_{FB}R_1$$

LT1118 Adjustable

OPERATION

Output Capacitor

The LT1118 family of voltage regulators require an output capacitor for stability. The regulators are stable with output capacitors larger than $0.2\mu F$. Load transient response is very sensitive to output capacitor value and dielectric choice. Low ESR ceramic capacitors are the best choice for fast settling to load transients. Output capacitors between $0.2\mu F$ and $1\mu F$ give good performance in most applications. Larger tantalum output capacitors may be used to reduce load transient amplitudes. Larger capacitors should be paralleled with a $0.1\mu F$ ceramic capacitor to maintain quick settling time performance and to insure stability of the regulator control loop. Capacitors larger than $10\mu F$ may be safely used with the regulators, but little transient settling performance improvement results from their use.

Worst case transient response of the LT1118 regulators occurs at zero output current. In order to obtain the fastest transient settling performance, the regulator output may be preloaded with a small current. The preload current reduces the regulator output impedance, reducing output voltage settling time.

Thermal Considerations

The LT1118 regulators are packaged in plastic SOT-223 and fused lead S8 packages. These small footprint packages are unable to convectively dissipate the heat generated when the regulator is operating at high current levels. In order to control die operating temperatures, the PC board layout should allow for maximum possible copper area at the ground pins of the LT1118. The ground pins and the tab on the SOT-223 package are electrically and

OPERATION

thermally connected to the die substrate. Table 1 shows measured thermal resistance from junction to ambient for the LT1118 connected to various sized PC board ground planes. The power dissipated in the LT1118 varies with input voltage and loading. When the regulator is sourcing current the power which must be dissipated by the package is:

$$P_D = (V_{IN} - V_{OUT}) \bullet I_{LOAD}.$$

When the regulator is sinking load current, power dissipation is nearly independent of V_{IN} and can be calculated as:

$$P_D = V_{OUT} \bullet I_{LOAD}$$
.

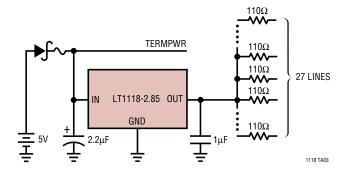
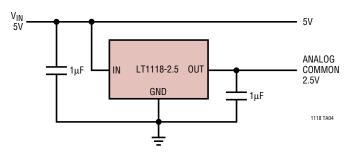

Heat sinking to the IC package must consider the worst case power dissipation which may occur.

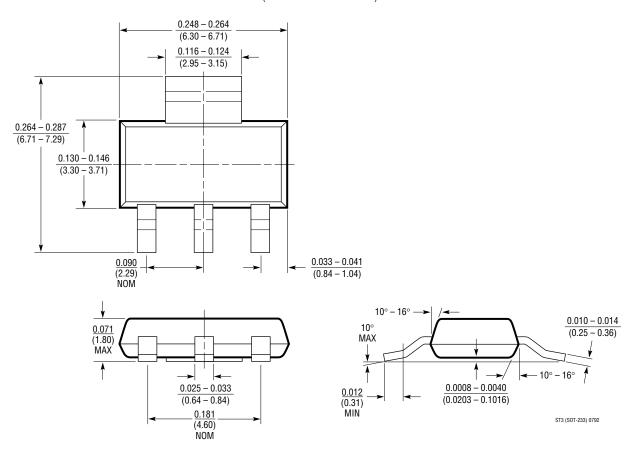
Table 1. Measured Thermal Resistance from Junction to Ambient for the LT1118


	S8 Package	S0T-223
Free Air	120°C/W	95°C/W
1 Sq Inch Copper	55°C/W	53°C/W
4 Sq Inch Copper	35°C/W	38°C/W

TYPICAL APPLICATIONS

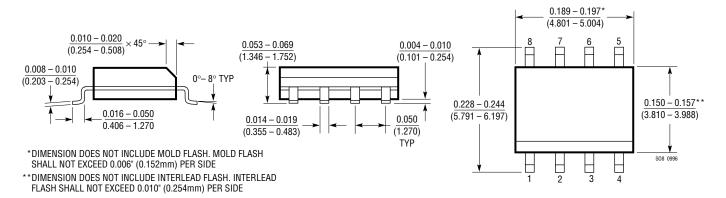
SCSI Active Terminator

Power Supply Splitter



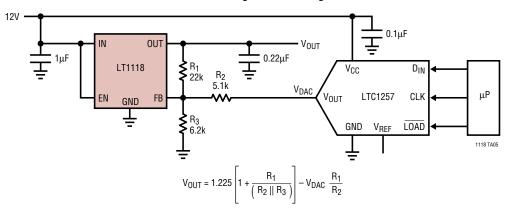
PACKAGE DESCRIPTION

Dimensions in inches (millimeters) unless otherwise noted.


ST Package 3-Lead Plastic SOT-223

(LTC DWG # 05-08-1630)

S8 Package 8-Lead Plastic Small Outline (Narrow 0.150)


(LTC DWG # 05-08-1610)

TYPICAL APPLICATION

Variable 2V to 10V Regulator with Digital Control

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1005	Logic Controlled Regulator	5V, 1A Main Output Plus 35mA Auxilliary Output
LT1117	800mA Low Dropout Regulator	Fixed 2.85V, 3.3V, 5V or Adjustable Outputs
LT1120A	Micropower Regulator with Comparator and Shutdown	20μA Supply Current, 2.5V Reference Output
LT1121	Micropower Low Dropout Regulator with Shutdown	Reverse Voltage and Reverse Current Protection