

90MHz, 22V/µs 16-Bit Accurate Operational Amplifier

FEATURES

- 90MHz Gain Bandwidth, f = 100kHz
- 22V/µs Slew Rate
- Settling Time: 900ns $(A_V = -1, 150 \mu V, 10V \text{ Step})$
- Low Distortion, -96.5dB for 100kHz, 10V_{P-P}
- Maximum Input Offset Voltage: 75µV
- Maximum Input Offset Voltage Drift: 2μV/°C
- Maximum (–) Input Bias Current: 10nA
- Minimum DC Gain: 1000V/mV
- Minimum Output Swing into 2k: ±12.8V
- Unity Gain Stable
- Input Noise Voltage: 5nV/√Hz
- Input Noise Current: 0.6pA/√Hz
- Total Input Noise Optimized for 1k < R_S < 20k
- Specified at ±5V and ±15V

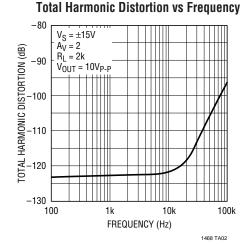
APPLICATIONS

- 16-Bit DAC Current-to-Voltage Converter
- Precision Instrumentation
- ADC Buffer
- Low Distortion Active Filters
- High Accuracy Data Acquisition Systems
- Photodiode Amplifiers

DESCRIPTION

The LT®1468 is a precision high speed operational amplifier with 16-bit accuracy and 900ns settling to $150\mu V$ for 10V signals. This unique blend of precision and AC performance makes the LT1468 the optimum choice for high accuracy applications such as DAC current-to-voltage conversion and ADC buffers. The initial accuracy and drift characteristics of the input offset voltage and inverting input bias current are tailored for inverting applications.

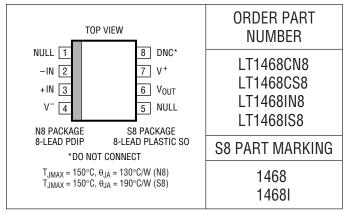
The 90MHz gain bandwidth ensures high open-loop gain at frequency for reducing distortion. In noninverting applications such as an ADC buffer, the low distortion and DC accuracy allow full 16-bit AC and DC performance.


The $22V/\mu s$ slew rate of the LT1468 improves large-signal performance in applications such as active filters and instrumentation amplifiers compared to other precision op amps.

The LT1468 is manufactured on Linear Technology's complementary bipolar process.

17, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION



ABSOLUTE MAXIMUM RATINGS

(Note 1)	
Total Supply Voltage (V+ to V-)	36V
Maximum Input Current (Note 2)	10mA
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range40)°C to 85°C
Specified Temperature Range (Note 4)40)°C to 85°C
Junction Temperature	150°C
Storage Temperature Range65°	°C to 150°C
Lead Temperature (Soldering, 10 sec)	300°C

PACKAGE/ORDER INFORMATION

Consult factory for Military Grade parts.

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_{CM} = 0V$ unless otherwise noted.

SYMBOL	. PARAMETER CONDITIONS		V _{SUPPLY}	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		±15V ±5V		30 50	75 175	μV μV
I _{OS}	Input Offset Current		±5V to ±15V		13	50	nA
I _B -	Inverting Input Bias Current		±5V to ±15V		3	±10	nA
I _B +	Noninverting Input Bias Current		±5V to ±15V		-10	±40	nA
	Input Noise Voltage	0.1Hz to 10Hz	±5V to ±15V		0.3		μV _{P-P}
e _n	Input Noise Voltage	f = 10kHz	±5V to ±15V		5		nV/√Hz
in	Input Noise Current	f = 10kHz	±5V to ±15V		0 É f		pA/√Hz
R _{IN}	Input Resistance	V _{CM} = ±12.5V Differential	±15V ±15V	100 50	240 150		MΩ kΩ
C _{IN}	Input Capacitance		±15V		4		pF
	Input Voltage Range +		±15V ±5V	12.5 2.5	13.5 3.5		V
	Input Voltage Range –		±15V ±5V		-14.3 -4.3	−12.5 −2.5	V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 12.5V$ $V_{CM} = \pm 2.5V$	±15V ±5V	96 96	110 112		dB dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4.5 V \text{ to } \pm 15 V$		100	112		dB
A _{VOL}	Large-Signal Voltage Gain	$V_{OUT} = \pm 12.5V, R_L = 10k$ $V_{OUT} = \pm 12.5V, R_L = 2k$ $V_{OUT} = \pm 2.5V, R_L = 10k$ $V_{OUT} = \pm 2.5V, R_L = 2k$	±15V ±15V ±5V ±5V	1000 500 1000 500	9000 5000 6000 3000		V/mV V/mV V/mV V/mV
V _{OUT}	Output Swing	$R_L = 10k$ $R_L = 2k$ $R_L = 10k$ $R_L = 2k$	±15V ±15V ±5V ±5V	±13.0 ±12.8 ±3.0 ±2.8	±13.6 ±13.5 ±3.6 ±3.5		V V V
I _{OUT}	Output Current	$V_{OUT} = \pm 12.5V$ $V_{OUT} = \pm 2.5V$	±15V ±5V	±15 ±15	±22 ±22		mA mA
I _{SC}	Short-Circuit Current	$V_{OUT} = 0V, V_{IN} = \pm 0.2V$	±15V	±25	±40		mA

$\begin{tabular}{ll} \textbf{ELECTRICAL CHARACTERISTICS} & T_A = 25^{\circ}C, \ V_{CM} = 0V \ unless \ otherwise \ noted. \end{tabular}$

SYMBOL	PARAMETER	CONDITIONS	V _{SUPPLY}	MIN	TYP	MAX	UNITS
SR	Slew Rate	$A_V = -1$, $R_L = 2k$ (Note 5)	±15V ±5V	15 11	22 17		V/µs V/µs
	Full-Power Bandwidth	10V Peak, (Note 6) 3V Peak, (Note 6)	±15V ±5V		350 900		kHz kHz
GBW	Gain Bandwidth	f = 100kHz, R _L = 2k	±15V ±5V	60 55	90 88		MHz MHz
THD	Total Harmonic Distortion	$A_V = 2$, $V_0 = 10V_{P-P}$, $f = 1kHz$ $A_V = 2$, $V_0 = 10V_{P-P}$, $f = 100kHz$	±15V ±15V		0.00007 0.0015		% %
t _r , t _f	Rise Time, Fall Time	A _V = 1, 10% to 90%, 0.1V	±15V ±5V	11 12			ns ns
	Overshoot	A _V = 1, 0.1V	±15V ±5V		30 35		% %
	Propagation Delay	A _V = 1, 50% V _{IN} to 50% V _{OUT} , 0.1V	±15V ±5V		9 10		ns ns
$\overline{t_s}$	Settling Time	10V Step, 0.01%, $A_V = -1$ 10V Step, 150 μ V, $A_V = -1$ 5V Step, 0.01%, $A_V = -1$	±15V ±15V ±5V		760 900 770		ns ns ns
R ₀	Output Resistance	A _V = 1, f = 100kHz	±15V		0.02		Ω
Is	Supply Current		±15V ±5V		3.9 3.6	5.2 5.0	mA mA

$0^{\circ}C \leq T_{A} \leq 70^{\circ}C, \; V_{CM}$ = OV unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	V _{SUPPLY}		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		±15V ±5V	•			150 250	μV μV
	Input V _{OS} Drift	(Note 7)	±5V to ±15V	•		0.7	2.0	μV/°C
I _{OS}	Input Offset Current		±5V to ±15V	•			65	nA
	Input Offset Current Drift		±5V to ±15V			60		pA/°C
I _B -	Inverting Input Bias Current		±5V to ±15V	•			±15	nA
	Negative Input Current Drift		±5V to ±15V			40		pA/°C
I _B +	Noninverting Input Bias Current		±5V to ±15V	•			±50	nA
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 12.5V$ $V_{CM} = \pm 2.5V$	±15V ±5V	•	94 94			dB dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4.5 V \text{ to } \pm 15 V$		•	98			dB
A _{VOL}	Large-Signal Voltage Gain	$V_{OUT} = \pm 12.5V, R_L = 10k$ $V_{OUT} = \pm 12.5V, R_L = 2k$ $V_{OUT} = \pm 2.5V, R_L = 10k$ $V_{OUT} = \pm 2.5V, R_L = 2k$	±15V ±15V ±5V ±5V	•	500 250 500 250			V/mV V/mV V/mV
V _{OUT}	Output Swing	$R_L = 10k$ $R_L = 2k$ $R_L = 10k$ $R_L = 2k$	±15V ±15V ±5V ±5V	•	±12.9 ±12.7 ±2.9 ±2.7			V V V
I _{OUT}	Output Current	$V_{OUT} = \pm 12.5V$ $V_{OUT} = \pm 2.5V$	±15V ±5V	•	±12.5 ±12.5			mA mA
I _{SC}	Short-Circuit Current	$V_{OUT} = 0V, V_{IN} = \pm 0.2V$	±15V	•	±17			mA
SR	Slew Rate	$A_V = -1$, $R_L = 2k$ (Note 5)	±15V ±5V	•	13 9			V/µs V/µs

ELECTRICAL CHARACTERISTICS $0 \, ^{\circ}\text{C} \le T_{A} \le 70 \, ^{\circ}\text{C}, \ V_{CM} = 0 \text{V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	V _{SUPPLY}		MIN	TYP	MAX	UNITS
GBW	Gain Bandwidth	f = 100kHz, R _L = 2k	±15V ±5V	•	55 50			MHz MHz
Is	Supply Current		±15V ±5V	•			6.5 6.3	mA mA

$-40^{\circ}C \le T_A \le 85^{\circ}C$, $V_{CM} = 0V$ unless otherwise noted (Note 4).

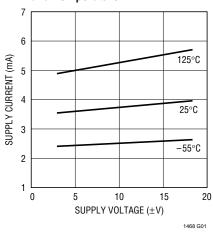
SYMBOL	PARAMETER	CONDITIONS	V _{SUPPLY}		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		±15V ±5V	•			230 330	μV μV
	Input V _{OS} Drift	(Note 7)	±5V to ±15V	•		0.7	2.5	μV/°C
I _{OS}	Input Offset Current		±5V to ±15V	•			80	nA
	Input Offset Current Drift		±5V to ±15V			120		pA/°C
I _B ⁻	Inverting Input Bias Current		±5V to ±15V	•			±30	nA
	Negative Input Current Drift		±5V to ±15V			80		pA/°C
I _B ⁺	Noninverting Input Bias Current		±5V to ±15V	•			±60	nA
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 12.5V$ $V_{CM} = \pm 2.5V$	±15V ±5V	•	92 92			dB dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4.5 V \text{ to } \pm 15 V$		•	96			dB
A _{VOL}	Large-Signal Voltage Gain	$V_{OUT} = \pm 12V, R_L = 10k$ $V_{OUT} = \pm 10V, R_L = 2k$ $V_{OUT} = \pm 2.5V, R_L = 10k$ $V_{OUT} = \pm 2.5V, R_L = 2k$	±15V ±15V ±5V ±5V	•	300 150 300 150			V/mV V/mV V/mV V/mV
V _{OUT}	Output Swing	$R_L = 10k$ $R_L = 2k$ $R_L = 10k$ $R_L = 2k$	±15V ±15V ±5V ±5V	•	±12.8 ±12.6 ±2.8 ±2.6			V V V
I _{OUT}	Output Current	$V_{OUT} = \pm 12.5V$ $V_{OUT} = \pm 2.5V$	±15V ±5V	•	±7 ±7			mA mA
I _{SC}	Short-Circuit Current	$V_{OUT} = 0V, V_{IN} = \pm 0.2V$	±15V	•	±12			mA
SR	Slew Rate	$A_V = -1$, $R_L = 2k$ (Note 5)	±15V ±5V	•	9 6			V/µs V/µs
GBW	Gain Bandwidth	f = 100kHz, R _L = 2k	±15V ±5V	•	45 40			MHz MHz
I _S	Supply Current		±15V ±5V	•			7.0 6.8	mA mA

The ● denotes specifications that apply over the full operating temperature range.

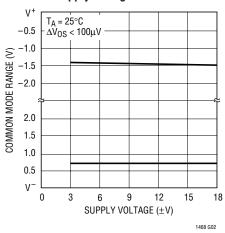
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The inputs are protected by back-to-back diodes and two 100Ω series resistors. If the differential input voltage exceeds 0.7V, the input current should be limited to 10mA. Input voltages outside the supplies will be clamped by ESD protection devices and input currents should also be limited to 10mA.

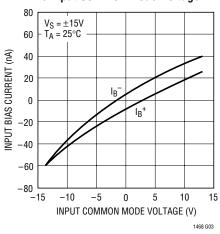
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.

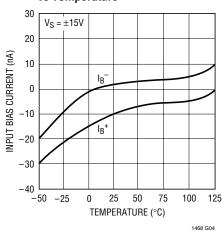

Note 4: The LT1468C is guaranteed to meet specified performance from 0° C to 70° C and is designed, characterized and expected to meet these extended temperature limits, but is not tested at -40° C and at 85° C. The LT1468I is guaranteed to meet the extended temperature limits.

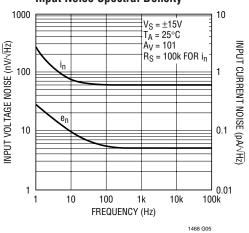
Note 5: Slew rate is measured between $\pm 8V$ on the output with $\pm 12V$ input for $\pm 15V$ supplies and $\pm 2V$ on the output with $\pm 3V$ input for $\pm 5V$ supplies.

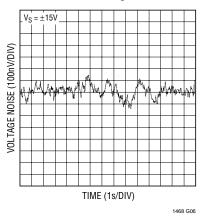

Note 6: Full power bandwidth is calculated from the slew rate measurement: FPBW = $SR/2\pi V_P$

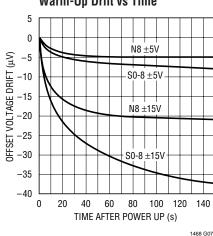
Note 7: This parameter is not 100% tested.

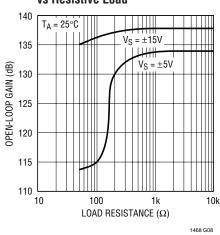

Supply Current vs Supply Voltage and Temperature


Input Common Mode Range vs Supply Voltage

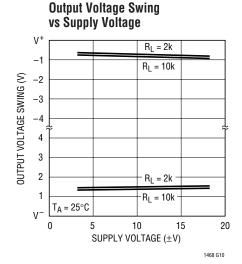

Input Bias Current vs Input Common Mode Voltage

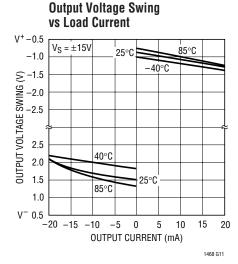

Input Bias Current vs Temperature

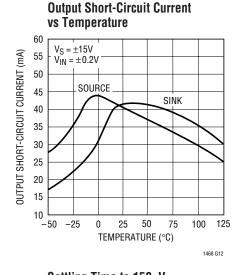

Input Noise Spectral Density

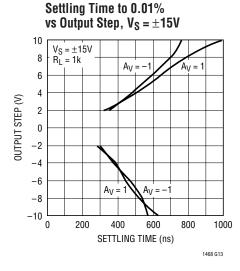

0.1Hz to 10Hz Voltage Noise

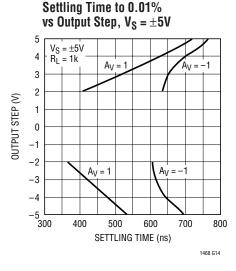

Warm-Up Drift vs Time

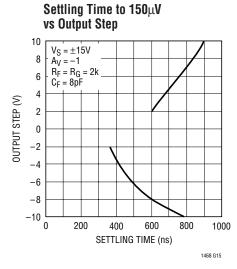

Open-Loop Gain vs Resistive Load

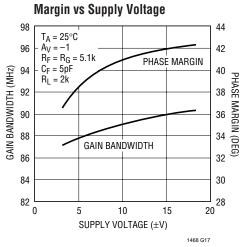


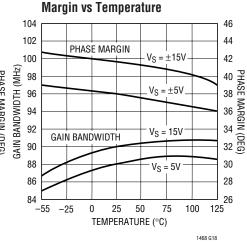

Open-Loop Gain vs Temperature

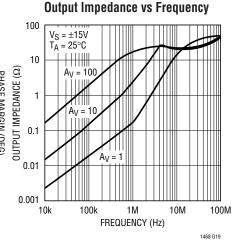


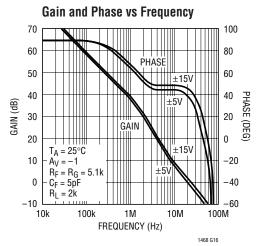


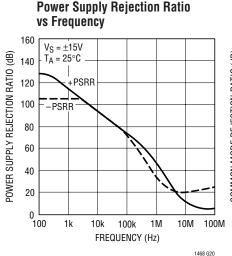


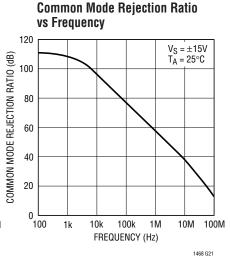


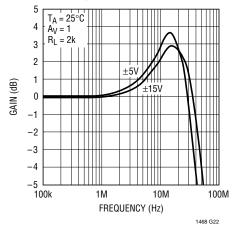

Gain Bandwidth and Phase

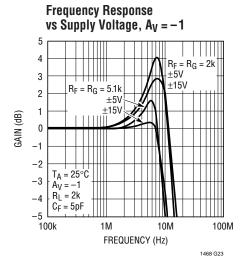


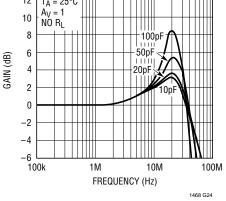

Gain Bandwidth and Phase

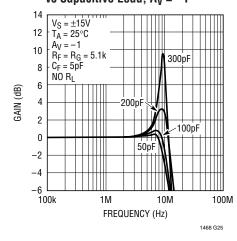


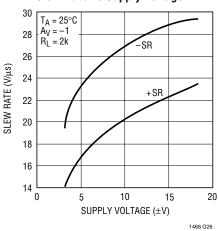


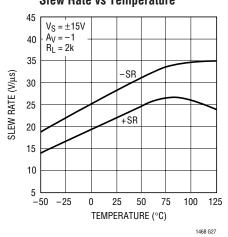


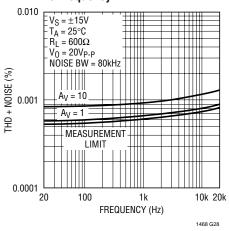




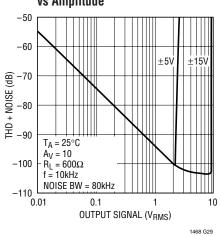


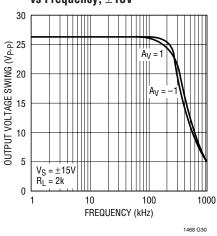

Frequency Response

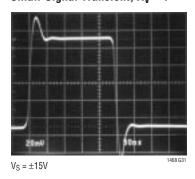

Frequency Response vs Capacitive Load, $A_V = -1$

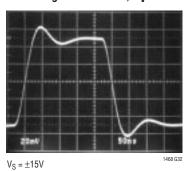


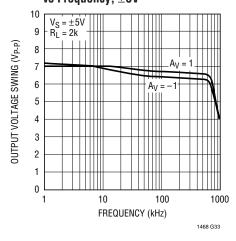
Slew Rate vs Temperature

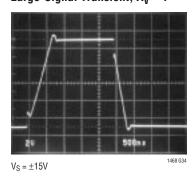


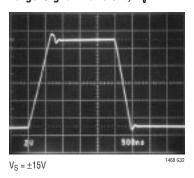

Total Harmonic Distortion + Noise vs Frequency

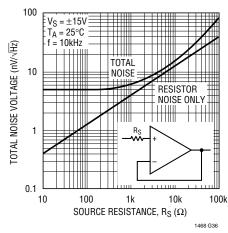

Total Harmonic Distortion + Noise vs Amplitude


Undistorted Output Swing vs Frequency, $\pm 15V$


Small-Signal Transient, $A_V = 1$

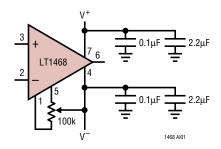

Small-Signal Transient, $A_V = -1$


Undistorted Output Swing vs Frequency, $\pm 5V$


Large-Signal Transient, $A_V = 1$

Large-Signal Transient, $A_V = -1$

Total Noise vs Unmatched Source Resistance



APPLICATIONS INFORMATION

The LT1468 may be inserted directly into many operational amplifier applications improving both DC and AC performance, provided that the nulling circuitry is removed. The suggested nulling circuit for the LT1468 is shown below.

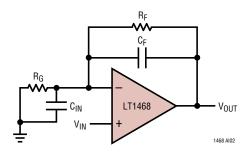
Offset Nulling

Layout and Passive Components

The LT1468 requires attention to detail in board layout in order to maximize DC and AC performance. For best AC results (for example fast settling time) use a ground plane, short lead lengths, and RF-quality bypass capacitors (0.01 μ F to 0.1 μ F) in parallel with low ESR bypass capacitors (1 μ F to 10 μ F tantalum). For best DC performance, use "star" grounding techniques, equalize input trace lengths and minimize leakage (i.e., 1.5G Ω of leakage between an input and a 15V supply will generate 10nA—equal to the maximum I $_B$ specification.)

Board leakage can be minimized by encircling the input circuitry with a guard ring operated at a potential close to that of the inputs. For inverting configurations tie the ring to ground, in noninverting connections tie the ring to the inverting input (note the input capacitance will increase which may require a compensating capacitor as discussed below.)

Microvolt level error voltages can also be generated in the external circuitry. Thermocouple effects caused by temperature gradients across dissimilar metals at the contacts to the inputs can exceed the inherent drift of the amplifier. Air currents over device leads should be minimized, package leads should be short, and the two input leads should be as close together as possible and maintained at the same temperature.


Make no connection to Pin 8. This pin is used for factory trim of the inverting input current.

The parallel combination of the feedback resistor and gain setting resistor on the inverting input can combine with the input capacitance to form a pole that can cause peaking or even oscillations. For feedback resistors greater than 2k, a feedback capacitor of the value:

$$C_F > (R_G)(C_{IN}/R_F)$$

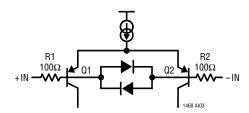
should be used to cancel the input pole and optimize dynamic performance. For applications where the DC noise gain is one, and a large feedback resistor is used, C_F should be greater than or equal to C_{IN} . An example would be a DAC I-to-V converter as shown on the front page of this data sheet where the DAC can have many tens of pF of output capacitance. Another example would be a gain of -1 with 5k resistors; a 5pF to 10pF capacitor should be added across the feedback resistor. The frequency response in a gain of -1 is shown in the Typical Performance curves with 2k and 5.1k resistors with a 5pF feedback capacitor.

Nulling Input Capacitance

Input Considerations

Each input of the LT1468 is protected with a 100Ω series resistor and back-to-back diodes across the bases of the input devices. If the inputs can be pulled apart, the input current should be limited to less than 10mA with an external series resistor. Each input also has two ESD clamp diodes—one to each supply. If an input is driven above the supply, limit the current with an external resistor to less than 10mA.

The LT1468 employs bias current cancellation at the inputs. The inverting input current is trimmed at zero common mode voltage to minimize errors in inverting applications such as I-to-V converters. The noninverting input current is not trimmed and has a wider variation and therefore a larger maximum value. As the input offset


APPLICATIONS INFORMATION

current can be greater than either input current, the use of balanced source resistance is NOT recommended as it actually degrades DC accuracy and also increases noise.

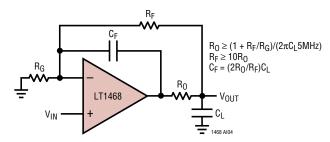
The input bias currents vary with common mode voltage as shown in the Typical Performance Characteristics. The cancellation circuitry was not designed to track this common mode voltage because the settling time would have been adversely affected.

The LT1468 inputs can be driven to the negative supply and to within 0.5V of the positive supply without phase reversal. As the input moves closer than 0.5V to the positive supply, the output reverses phase.

Input Stage Protection

Total Input Noise

The curve of Total Noise vs Unmatched Source Resistance in the Typical Performance Characteristics shows that with source resistance below 1k, the voltage noise of the amplifier dominates. In the 1k to 20k region the increase in noise is due to the source resistance. Above 20k the input current noise component is larger than the resistor noise.


Capacitive Loading

The LT1468 drives capacitive loads of up to 100pF in unity gain and 300pF in a gain of -1. When there is a need to drive a larger capacitive load, a small series resistor should be inserted between the output and the load. In addition, a capacitor should be added between the output and the inverting input as shown in Driving Capacitive Loads.

Settling Time

The LT1468 is a single stage amplifier with an optimal thermal layout that leads to outstanding settling performance. Measuring settling, even at the 12-bit level is very challenging, and at the 16-bit level requires a great deal of subtlety and expertise. Fortunately, there are two

Driving Capacitive Loads

excellent Linear Technology reference sources for settling measurements, Application Notes 47 and 74. Appendix B of AN47 is a vital primer on 12-bit settling measurements, and AN74 extends the state of the art while concentrating on settling time with a 16-bit current output DAC input.

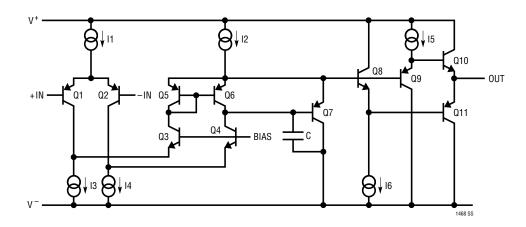
The $150\mu V$ settling curve in the Typical Performance Characteristics is measured using the Differential Amplifier method of AN74 followed by a clamped, nonsaturating gain of 100. The total gain of 500 allows a resolution of $100\mu V/DIV$ with an oscilloscope setting of 0.05V/DIV

The settling of the DAC I-to-V converter on the front page was measured using the exact methods of AN74. The optimum nulling of the DAC output capacitance requires 20pF across the 6k feedback resistor. The theoretical limit for 16-bit settling is 11.1 times this RC time constant or 1.33 μ s. The actual settling time is 1.7 μ s at the output of the LT1468. The LT1468 is the fastest Linear Technology amplifier in this application.

The optional noise filter adds a slight delay of 100ns, but reduces the noise bandwidth to 1.6MHz which increases the output resolution for 16-bit accuracy.

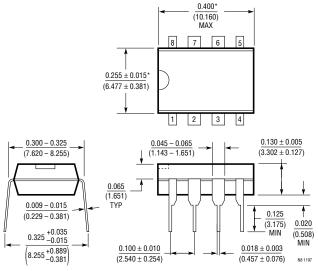
Distortion

The LT1468 has outstanding distortion performance as shown in the Typical Performance curves of Total Harmonic Distortion + Noise vs Frequency and Amplitude. The high open-loop gain and inherently balanced architecture reduce errors to yield 16-bit accuracy to frequencies as high as 100kHz. An example of this performance is the Typical Application titled 100kHz Low Distortion Bandpass Filter. This circuit is useful for cleaning up the output of a high performance signal generator such as the B & K type 1051 or HP3326A.

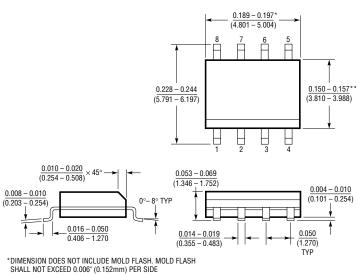


APPLICATIONS INFORMATION

Another key application for LT1468 is buffering the input to a 16-bit A/D converter. In a gain of 1 or 2 this straightforward circuit provides uncorrupted AC and DC levels to the converter, while buffering the A/D input sample-and-


hold circuit from high source impedance which can reduce the maximum sampling rate. The front page graph shows better than 16-bit distortion for a gain of 2 with a 10V_{P-P} output.

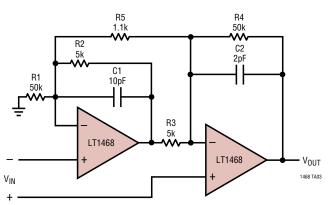
SIMPLIFIED SCHEMATIC


PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

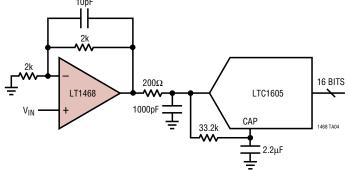
N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD ELASH OR PROTRUSIONS

S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610)

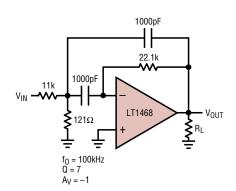

DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD

FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE



TYPICAL APPLICATIONS

Instrumentation Amplifier


10pF

16-Bit ADC Buffer

GAIN = [R4/R3][1 + (1/2)(R2/R1 + R3/R4) + (R2 + R3)/R5] = 102TRIM R5 FOR GAIN TRIM R1 FOR COMMON MODE REJECTION

100kHz Low Distortion Bandpass Filter

100kHz Distortion

SIGNAL LEVEL	RL	2ND HARMONIC	3RD HARMONIC		
1V _{RMS}	1M	-106dB	-103dB		
2V _{RMS}	1M	-105dB	-105dB		
3.5V _{RMS}	1M	-106dB	-104dB		
1V _{RMS}	2k	-103dB	-103dB		
2V _{RMS}	2k	-99dB	-103dB		
3.5V _{RMS}	2k	-96.5dB	-102dB		

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1167	Precision Instrumentation Amplifier	Single Resistor Gain Set, 0.04% Max Gain Error, 10ppm Max Gain Nonlinearity
LTC1595/LTC1596	16-Bit Serial Multiplying I _{OUT} DACs	±1LSB Max INL/DNL, Low Glitch, DAC8043 16-Bit Upgrade
LTC1597	16-Bit Parallel Multiplying I _{OUT} DAC	±1LSB Max INL/DNL, Low Glitch, On-Chip Bipolar Resistors
LTC1604	16-Bit, 333ksps Sampling ADC	± 2.5 V Input, SINAD = 90dB, THD = -100 dB
LTC1605	Single 5V, 16-Bit, 100ksps Sampling ADC	Low Power, ±10V Inputs, Parallel/Byte Interface