

INITIAL RELEASE Final Electrical Specifications LTC1411

Single Supply 14-Bit 2.5Msps ADC

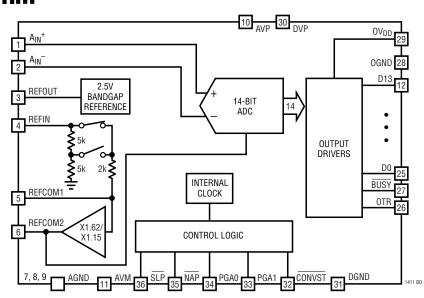
FEATURES

- Sample Rate: 2.5Msps
- 80dB S/(N + D) and 88dB THD
- Single 5V Operation
- No Pipeline Delay
- Onboard Programmable Gain Amplifier
- Low Power Dissipation: 195mW (Typ)
- True Differential Inputs Reject Common Mode Noise
- Out-of-Range Indicator
- Internal or External Reference
- Sleep (1µA) and Nap (2mA) Shutdown Modes
- 36-Pin SSOP Package

APPLICATIONS

- Telecommunications
- High Speed Data Acquisition
- Digital Signal Processing
- Multiplexed Data Acquisition Systems
- Spectrum Analysis
- Imaging Systems

C, LTC and LT are registered trademarks of Linear Technology Corporation.


DESCRIPTION

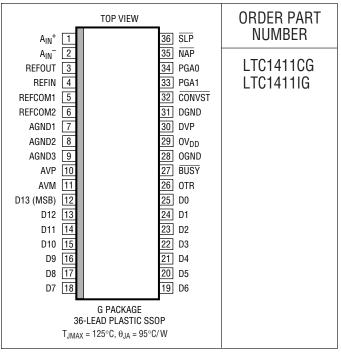
February 2001

The LTC[®]1411 is a 2.5Msps sampling 14-bit A/D converter in a 36-pin SSOP package, which typically dissipates only 195mW from a single 5V supply. This device comes complete with a high bandwidth sample-and-hold, a precision reference, a programmable gain amplifier and an internally trimmed clock. The ADC can be powered down with either the Nap or Sleep mode for low power applications.

The LTC1411 converts either differential or single-ended inputs and presents data in 2's complement format. Maximum DC specs include $\pm 2LSB$ INL, 14 bits no missing code and an internal reference with 15ppm/°C drift, over temperature. Outstanding dynamic performance includes 80dBS/(N + D) and 88dB THD.

The LTC1411 has four levels of programmable gain (0dB, -3dB, -6dB and -9dB) selected by two digital input pins, PGA0 and PGA1. This provides input spans of $\pm 1.8V$, $\pm 1.27V$, $\pm 0.9V$ and $\pm 0.64V$. An out-of-the-range signal together with the D13 (MSB) will indicate whether a signal is over or under the ADC's input range. A simple conversion start input and a data ready signal ease connections to FIFOs, DSPs and microprocessors.

BLOCK DIAGRAM


Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

ABSOLUTE MAXIMUM RATINGS

$AVP = DVP = OV_{DD} = V_{DD}$ (Notes 1, 2)

Supply Voltage (V _{DD}) 6V
Analog Input Voltage (Note 3) $-0.3V$ to (V _{DD} + 0.3V)
Digital Input Voltage (Note 4) – 0.3V to 10V
Digital Output Voltage $-0.3V$ to (V _{DD} + 0.3V)
Power Dissipation 500mW
Operating Temperature Range
LTC1411C0°C to 70°C
LTC1411I40°C to 85°C
Storage Temperature Range –65°C to 150°C
Lead Temperature (Soldering, 10 sec)

PACKAGE/ORDER INFORMATION

Consult factory for parts specified with wider operating temperature ranges.

CONVERTER CHARACTERISTICS

The • denotes specifications which apply over the full operating temperature range, otherwise specifications are $T_A = 25^{\circ}C$. (Notes 5, 6)

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Resolution (No Missing Codes)		•	14			Bits
Integral Linearity Error	(Note 7)	•			±2	LSB
Offset Error	(Note 8)				±16	LSB
		•			±24	LSB
Full-Scale Error	External Reference = 2.5V				±60	LSB
Full-Scale Tempco	$I_{OUT(REF)} = 0$			±15		ppm/°C

DYNAMIC ACCURACY $T_A = 25^{\circ}C$ (Note 5)

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
S/(N + D)	Signal-to-Noise Plus Distortion Ratio	500kHz Input Signal		80		dB
THD	Total Harmonic Distortion	500kHz Input Signal, Up to 5th Harmonic		-88		dB
	Peak Harmonic or Spurious Noise	500kHz Input Signal		88		dB
IMD	Intermodulation Distortion	f _{IN1} = 97.7kHz, f _{IN2} = 104.2kHz	-86			dB
	Full Power Bandwidth			40		MHz
	Full Linear Bandwidth	$S/(N + D) \ge 76 dB$		1.0		MHz
	Transition Noise			0.66		LSB _{RMS}

ANALOG INPUT $T_A = 25^{\circ}C$ (Note 5)

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
V _{IN} Analog Input Range (Note 9)		$(A_{IN}^+) - (A_{IN}^-)$, PGA0 = PGA1 = 5V $(A_{IN}^+) - (A_{IN}^-)$, PGA0 = 5V, PGA1 = 0V $(A_{IN}^+) - (A_{IN}^-)$, PGA0 = 0V, PGA1 = 5V $(A_{IN}^+) - (A_{IN}^-)$, PGA0 = PGA1 = 0V		±1.8 ±1.27 ±0.9 ±0.64		V V V V
	Common Mode Input Range	A _{IN} ⁺ or A _{IN} ⁻	0		V _{DD}	V
C _{IN}	Analog Input Capacitance	Between Conversions (Sample Mode) During Conversions (Hold Mode)		10 4		pF pF
t _{ACQ}	Sample-and-Hold Acquisition Time			100		ns
t _{AP}	Sample-and-Hold Aperture Delay Time			-0.5		ns
t _{jitter}	Sample-and-Hold Aperture Delay Time Jitter			1		ps _{RMS}
CMRR	Analog Input Common Mode Rejection Ratio	$0V < (A_{IN}^{-} = A_{IN}^{+}) < V_{DD}$		63		dB

INTERNAL REFERENCE CHARACTERISTICS T_A = 25° C (Note 5)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
V _{REF} Output Voltage	$I_{OUT} = 0$	2.48	0 2.500	2.520	V
V _{REF} Output Tempco	$I_{OUT} = 0$		±15		ppm/°C
V _{REF} Line Regulation	$4.75V \le V_{DD} \le 5.25V$		0.01		LSB/V
V _{REF} Load Regulation	$0 \le I_{OUT} \le 1 \text{mA}$		2		LSB
REFCOM2 Output Voltage	I _{OUT} = 0, PGA0 = PGA1 = 5V		4.05		V

DIGITAL INPUTS AND OUTPUTS

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are T_A = 25°C. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
V _{IH}	High Level Input Voltage	V _{DD} = 5.25V		2.4			V
V _{IL}	Low Level Input Voltage	V _{DD} = 4.75V				0.8	V
I _{IN}	Digital Input Current	$V_{IN} = 0V$ to V_{DD} , Except \overline{SLP} , \overline{NAP} (Note 11)				±10	μA
CIN	Digital Input Capacitance				2		pF
V _{OH}	High Level Output Voltage	$V_{DD} = 4.75V, I_0 = -10\mu A$ $V_{DD} = 4.75V, I_0 = -200\mu A$	•	4.0	4.75		V V
V _{OL}	Low Level Output Voltage	$V_{DD} = 4.75V, I_0 = 160\mu A$ $V_{DD} = 4.75V, I_0 = 1.6m A$			0.05 0.10	0.4	V V
ISOURCE	Output Source Current	$V_{OUT} = 0V$			-10		mA
I _{SINK}	Output Sink Current	$V_{OUT} = V_{DD}$			10		mA

POWER REQUIREMENTS

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are T_A = 25°C. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
V _{DD}	Supply Voltage	(Note 9)		4.75		5.25	V
I _{DD}	Supply Current Nap Mode Sleep Mode	$\frac{\overline{NAP}}{SLP} = 0V$	•		39 2 1	65	mA mA μA
P _D	Power Dissipation Nap Mode Sleep Mode	$\frac{\overline{NAP}}{SLP} = 0V$	•		195 10 5	325	mW mW μW

TIMING CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are T_A = 25°C. (Notes 5) (See Figures 4, 6)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
f _{SAMPLE(MAX)}	Maximum Sampling Frequency	(Note 9)		2.5			MHz
t _{CONV}	Conversion Time		•		250	350	ns
t _{ACQ}	Acquisition Time				100		ns
t ₀	\overline{SLP} to \overline{CONVST} \downarrow Wake-Up Time	10µF Bypass Capacitor at REFCOM2 Pin			10		ms
t ₁	NAP↑to CONVST↓Wake-Up Time				200		ns
t ₂	CONVST Low Time	(Note 10)	•	20			ns
t ₃	CONVST to BUSY Delay	C _L = 50pF			5		ns
t ₄	Data Ready After BUSY↑				±20		ns
t ₅	CONVST High Time	(Note 10)	•	20			ns
t ₆	Aperture Delay of Sample-and-Hold				-0.5		ns

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: All voltage values are with respect to ground with DGND, OGND, AVM and AGND wired together unless otherwise noted.

Note 3: When these pin voltages are taken below AGND or above V_{DD} , they will be clamped by internal diodes. This product can handle input currents greater than 100mA without latchup.

Note 4: When these pin voltages are taken below AGND, they will be clamped by internal diodes. This product can handle input currents greater than 100mA below AGND without latchup. These pins are not clamped to V_{DD} .

Note 5: V_{DD} = 5V, f_{SAMPLE} = 2.5MHz at 25°C and t_r = t_f = 5ns unless otherwise specified.

Note 6: Linearity, offset and full-scale specifications apply for a singleended A_{IN}^+ input with A_{IN}^- tied to an external 2.5V reference voltage. **Note 7:** Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.

Note 8: Bipolar offset is the offset voltage measured from -0.5LSB when the output code flickers between 0000 0000 0000 00 and 1111 1111 1111 11.

Note 9: Recommended operating conditions.

Note 10: The falling CONVST edge starts a conversion. If CONVST returns high at a critical point during the conversion it can create small errors. For best performance ensure that CONVST returns high within 20ns after conversion start of after BUSY rises.

Note 11: $\overline{\text{SLP}}$ and $\overline{\text{NAP}}$ have an internal pull-down so the pins will draw approximately 7µA when tied high and less than 1µA when tied low.

PIN FUNCTIONS

A_{IN}⁺ (Pin 1): Positive Analog Input. The ADC converts the difference voltage between A_{IN}^+ and A_{IN}^- with programmable input ranges of $\pm 1.8V$, $\pm 1.27V$, $\pm 0.9V$ and $\pm 0.64V$ depending on PGA selection. A_{IN}^+ has common mode range between 0V and V_{DD}.

 A_{IN}^{-} (Pin 2): Negative Analog Input. This pin can be tied to the REFOUT pin of the ADC or tied to an external DC voltage. This voltage is also the bipolar zero for the ADC. A_{IN}^{-} has common mode range between OV and V_{DD} .

REFOUT (Pin 3): 2.5V Reference Output. Bypass to AGND1 with a 22 μ F tantalum capacitor if REFOUT is tied to A_{IN}⁻. No capacitor is needed if the external reference is used to drive A_{IN}⁻.

REFIN (Pin 4): Reference Buffer Input. This pin can be tied to REFOUT or to an external reference if more precision is required.

REFCOM1 (Pin 5): Noise Reduction Pin. Put a 10μ F bypass capacitor at this pin to reduce the noise going into the reference buffer.

REFCOM2 (Pin 6): 4.05V Reference Compensation Pin. Bypass to AGND1 with a 10μ F tantalum capacitor in parallel with a 0.1μ F ceramic.

AGND (Pins 7 to 9): Analog Ground. AGND1 is the ground for the reference. AGND2 is the ground for the comparator and AGND3 is the ground for the remaining analog circuitry.

PIN FUNCTIONS

AVP (Pin 10): 5V Analog Power Supply. Bypass to AGND with a 10μ F tantalum capacitor.

AVM (Pin 11): Analog and Digital Substrate Pin. Tie this pin to AGND.

D13 to D0 (Pins 12 to 25): Digital Data Outputs. D13 is the MSB (Most Significant Bit).

OTR (Pin 26): Out-of-the-Range Pin. This pin can be used in conjunction with D13 to determine if a signal is less than or greater than the analog input range. If D13 is low and OTR is high, the analog input to the ADC exceeds the maximum voltage of the input range.

BUSY (Pin 27): Busy Output. Converter status pin. It is low during conversion.

OGND (Pin 28): Digital Ground for Output Drivers (Data Bits, OTR and BUSY).

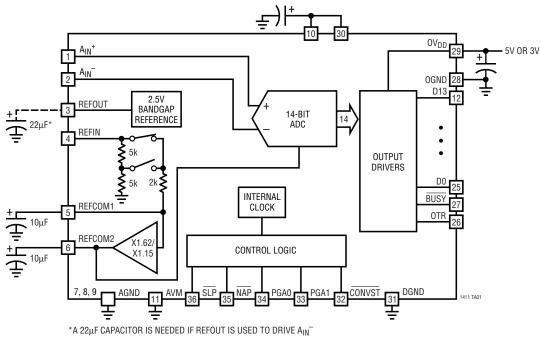
OV_{DD} (Pin 29): 3V or 5V Digital Power Supply for Output Drivers (Data Bits, OTR and BUSY). Bypass to OGND with a 10µF tantalum capacitor.

DVP (Pin 30): 5V Digital Power Supply Pin. Bypass to OGND with a 10μ F tantalum capacitor.

DGND (Pin 31): Digital Ground.

CONVST (Pin 32): Conversion Start Signal. This active low signal starts a conversion on its falling edge.

PGA1, PGA0 (Pins 33, 34): Programmable Gain Logic Inputs. This ADC has four levels of gain controlled by these two pins. For the logic inputs applied to PGA0 and PGA1, the following summarizes the gain levels and the analog input range with A_{IN}^{-1} tied to 2.5V.


Table 1. Input Spans for LTC1411

PGAO	PGA1	LEVEL	INPUT Span	REFCOM2 Voltage
5V	5V	0dB	±1.8V	4V
5V	0V	-3dB	±1.28V	2.9V
0V	5V	-6dB	±0.9V	2V
0V	0V	-9dB	±0.64V	1.45V

NAP (Pin 35): Nap Input. Driving this pin low will put the ADC in the Nap mode and will reduce the supply current to 2mA.

SLP (Pin 36): Sleep Input. Driving this pin low will put the ADC in the Sleep mode and the ADC draws less than 1μ A of supply current.

TYPICAL CONNECTION DIAGRAM

Driving the Analog Input

The differential analog inputs of the LTC1411 are easy to drive. The inputs may be driven differentially or as a singleended input (i.e., the A_{IN}⁻ input is tied to a fixed DC voltage such as the REFOUT pin of the LTC1411 or an external source). Figure 1 shows a simplified block diagram for the analog inputs of the LTC1411. The A_{IN}^+ and A_{IN}^- are sampled at the same instant. Any unwanted signal that is common mode to both inputs will be reduced by the common mode rejection of the sample-and-hold circuit. The inputs draw only one small current spike while charging the sample-and-hold capacitors at the end of conversion. During conversion, the analog inputs draw only a small leakage current. If the source impedance of the driving circuits is low, then the LTC1411 inputs can be driven directly. More acquisition time should be allowed for a higher impedance source.

Onboard Programmable Gain Amplifier

The LTC1411 has two logic input pins (PGA0 and PGA1) that are used to select one of four analog input ranges. These input ranges are set by changing the reference voltage that is applied to the internal DAC of the ADC (REFCOM2). For the "OdB" setting the internal DAC sees

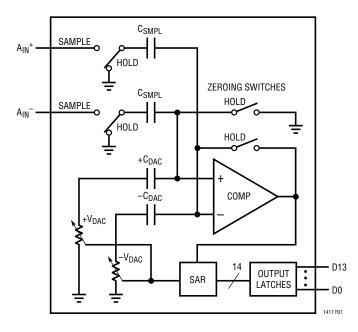


Figure 1. Simplified Block Diagram

the full reference voltage of 4V. The analog input range is 0.7V to 4.3V with $A_{IN}^- = 2.5V$. This corresponds to an input span of $\pm 1.8V$ with respect to the voltage applied to A_{IN}^- . For the "-3dB" setting the internal reference is reduced to 0.707 • 4V = 2.9V. Likewise the input span is reduced to $\pm 1.28V$. The following table lists the input span with respect to A_{IN}^- for the different PGA0 and PGA1 settings.

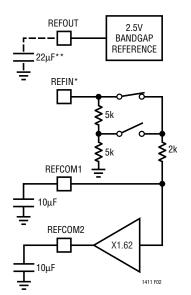
Table 1. Input Spans for LTC1411

PGAO	PGA1	LEVEL	INPUT Span	REFCOM2 Voltage
5V	5V	0dB	±1.8V	4V
5V	0V	-3dB	±1.28V	2.9V
0V	5V	-6dB	±0.9V	2V
0V	0V	-9dB	±0.64V	1.45V

When changing from one input span to another, more time is needed for the REFCOM2 pin to reach the correct level because the bypass capacitor on the pin needs to be charged or discharged. Figure 2 shows the recommended capacitors at the REFCOM1 and REFCOM2 pins (10μ F each).

When -6dB or -9dB is selected, the voltage at REFCOM1 (see Figure 2) must first settle before REFCOM2 reaches the correct level. The typical delay is about 600ms.

When the REFCOM2 level is changed from 2.9V to 4V (changing PGA setting from -3dB to 0dB), the typical delay is 3ms. However, if the voltage at REFCOM2 is changed from 4V to 2.9V (changing PGA setting from 0dB to -3dB) only a 60 μ A sink current is present to discharge the 10 μ F bypass capacitor. In this case a pull-down resistor, for example of 5k, at REFCOM2 will typically reduce the delay from 400ms to 100ms.


Internal Reference

The LTC1411 has an on-chip, temperature compensated, curvature corrected, bandgap reference that is factory trimmed to 2.500V. If this REFOUT pin is used to drive the A_{IN}^{-} pin, a 22µF tantalum bypass capacitor is required and this REFOUT voltage sets the bipolar zero for the ADC.

The REFIN pin is connected to the reference buffer through a 2k resistor and two PGA switches. The REFIN pin can be

connected to REFOUT directly or to an external reference. Figure 2 shows the reference and buffer structure for the LTC1411. The input to the reference buffer is either REFIN or 1/2 of REFIN depending on the PGA selection. The REFCOM1 pin bypassed with a 10 μ F tantalum capacitor helps reduce the noise going into the buffer. The reference buffer has a gain of 1.62 or 1.15 (depends on PGA selection). It is compensated at the REFCOM2 pin with a 10 μ F tantalum capacitor. The input span of the ADC is set by the output voltage of this REFCOM2 voltage. For a 2.5V input at the REFIN pin, the REFCOM2 will have 4V output for PGA1 = PGA0 = 5V and the ADC will have a span of 3.6V.

*THIS PIN CAN BE TIED TO REFOUT OR AN EXTERNAL SOURCE **A 22 μF CAPACITOR IS NEEDED IF REFOUT IS USED TO DRIVE A_{IN}^-

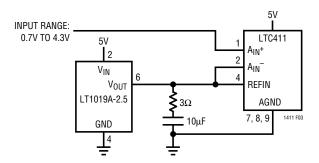


Figure 3. Supplying a 2.5V Reference Voltage to the LTC1411 with the LT1019A-2.5

Figure 3 shows a typical reference, the LT1019A-2.5 connected to the LTC1411. This will provide an improved drift (equal to the maximum 5ppm/°C of the LT1019A-2.5).

Digital Interface

The ADC has a very simple digital interface with only one control input, $\overline{\text{CONVST}}$. A logic low applied to the $\overline{\text{CONVST}}$ input will initiate a conversion. The ADC presents digital data in 2's complement format with bipolar zero set by the voltage applied to the A_{IN}^- pin.

Internal Clock

The internal clock is factory trimmed to achieve a typical conversion time of 260ns. With the typical acquisition time of 100ns, a throughput sampling rate of 2.5Msps is guaranteed.

Out-of-the-Range Signal (OTR)

The LTC1411 has a digital output, OTR, that indicates if an analog input signal is out of range. The OTR remains low when the analog input is within the specified range. Once the analog signal goes to the most negative input (10 0000 0000 0000) or 64LSB above the specified most positive input, OTR will go high. By NORing D13 (MSB) and its complement with OTR, overrange and underrange can be detected as shown in Figure 4. Table 2 is the truth table of the out-of-the-range circuit in Figure 4.

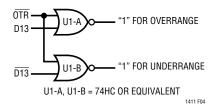


Figure 4. Overrange and Underrange Logic

Table 2.	Out-of-the-Range	Truth	Table
----------	-------------------------	-------	-------

OTR	D13 (MSB)	ANALOG INPUT					
0	0 In Range						
0	1 In Range						
1	0	Overrange					
1	1	Underrange					

Power Shutdown (Sleep and Nap Modes)

The LTC1411 provides two shutdown features that will save power when the ADC is inactive.

By driving the \overline{SLP} pin low for Sleep mode, the ADC shuts down to less than 1µA. After release from the Sleep mode, the ADC needs 10ms (10µF bypass capacitor on the REFCOM2 pin) to wake up.

In Nap mode, all the power is off except the internal reference which is still active for the other external circuitry. In this mode the ADC draws about 2mA instead of 39mA (for minimum power, the logic inputs must be within 600mV from the supply rails). The wake-up time from Nap mode to active state is 200ns as shown in Figure 5.

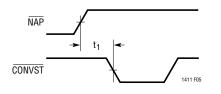


Figure 5. NAP to CONVST Wake-Up Timing

Board Layout and Bypassing

Wire wrap boards are not recommended for high resolution or high speed A/D converters. To obtain the best performance from the LTC1411, a printed circuit board with a ground plane is required. Layout for the printed circuit board should ensure that the digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital track alongside an analog signal track.

An analog ground plane separate from the logic system ground should be established under and around the ADC. AGND1, 2, 3 (Pins 7 to 9), AVM (Pin 11), DGND (Pin 31) and OGND (Pin 28) and all other analog grounds should be connected to a single analog ground point. The REFOUT, REFCOM1, REFCOM2 and AVP should bypass to this analog ground plane (see Figure 6). No other digital grounds should be connected to this analog ground plane. Low impedance analog and digital power supply common returns are essential to low noise operation of the ADC and the foil width for these tracks should be as wide as possible.

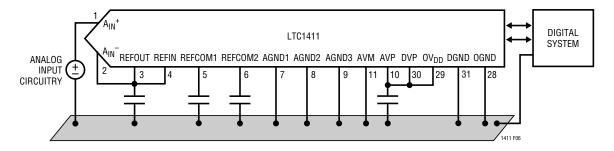


Figure 6. Power Supply Grounding Practice

Timing and Control

Conversion start is controlled by the $\overline{\text{CONVST}}$ digital input. The falling edge transition of the $\overline{\text{CONVST}}$ will start a conversion. Once initiated, it cannot be restarted until the conversion is complete. Converter status is indicated by the $\overline{\text{BUSY}}$ output. $\overline{\text{BUSY}}$ is low during a conversion. The digital output code is updated at the end of conversion about 5ns after BUSY rises, i.e., output data is not valid on the rising edge of BUSY. Valid data can be latched with the falling edge of BUSY or with the rising edge of CONVST. In either case, the data latched will be for the previous conversion results. Figures 7a and 7b are the timing diagrams for the LTC1411.

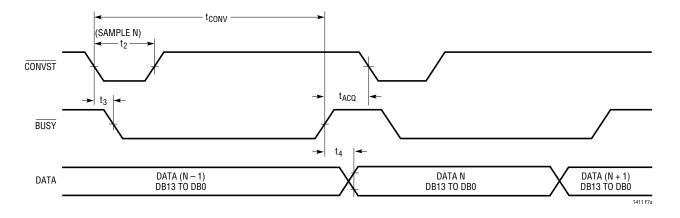


Figure 7a. CONVST Starts a Conversion with a Short Active Low Pulse

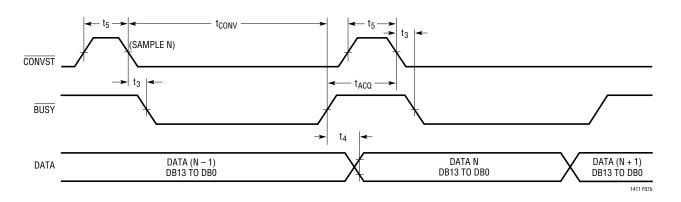


Figure 7b CONVST Starts a Conversion with a Short Active High Pulse

Figure 8 is the input/output characteristics of the ADC when A_{IN}^{-} = 2.5V. The code transitions occur midway between successive integer LSB values (i.e., 0.5LSB,

1.5LSB, 2.5LSB... FS – 1.5LSB). The output code is scaled such that 1LSB = FS/16384 = $3.6V/16384 = 219.7\mu V$.

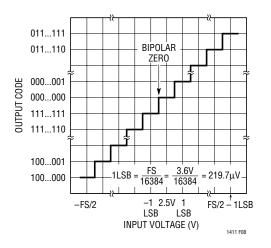


Figure 8. LTC1411 Bipolar Transfer Characteristics (2's Complement)

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

(LTC DWG # 05-08-1640) $\frac{12.67 - 12.93^*}{(0.499 - 0.509)}$ **HHHH** $\frac{7.65 - 7.90}{(0.301 - 0.311)}$

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

<u>5.20 - 5.38**</u> (0.205 - 0.212) 1.73 – 1.99 $(\overline{0.068 - 0.078})$ 0° - 8° A 0.65 $\frac{0.55 - 0.95}{(0.022 - 0.037)}$ 0.13 - 0.22 (0.0256) (0.005 - 0.009) $\frac{0.05 - 0.21}{(0.002 - 0.008)}$ BSC 0.25 - 0.38 (0.010 - 0.015)

G Package 36-Lead Plastic SSOP (0.209)

NOTE: DIMENSIONS ARE IN MILLIMETERS *DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.152mm (0.006") PER SIDE

**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE

G36 SSOP 1098

RELATED PARTS

PART NUMBER	RESOLUTION	SPEED	COMMENTS
16-Bit		1	
LTC1608	16	500ksps	±2.5V Input Range, Pin Compatible with LTC1604
LTC1604	16	333ksps	±2.5V Input Range, ±5V Supply
LTC1606	16	250ksps	±10V Input Range, Pin Compatible with LTC1605
LTC1609	16	200ksps	Serial Interface
LTC1605/-1/-2	16	100ksps	±10V/±4V/0V to 4V Input Ranges, Single 5V Supply
14-Bit	·		
LTC1414	14	2.2Msps	150mW, 81dB SINAD and 95dB SFDR
LTC1419	14	800ksps	150mW, 81.5dB SINAD and 95dB SFDR
LTC1416	14	400ksps	75mW, Low Power with Excellent AC Specs
LTC1417	14	400ksps	20mW, Serial Interface, 16-Lead SSOP Package
LTC1418	14	200ksps	15mW, Single 5V, Serial/Parallel I/O
12-Bit		1	
LTC1420	12	10Msps	5V or \pm 5V Supply, 71dB SINAD and Input PGA
LTC1412	12	3Msps	150mW, 71dB SINAD and 84dB THD
LTC1402	12	2.2Msps	90mW, Serial Interface, 16-Lead SSOP Package
LTC1410	12	1.25Msps	150mW, 71.5dB SINAD and 84dB THD
LTC1415	12	1.25Msps	55mW, Single 5V Supply
LTC1409	12	800ksps	80mW, 71.5dB SINAD and 84dB THD
LTC1279	12	600ksps	60mW, Single 5V or ±5V Supply
LTC1404	12	600ksps	High Speed Serial I/O in SO-8 Package
LTC1278-5	12	500ksps	75mW, Single 5V or ±5V Supply
LTC1278-4	12	400ksps	75mW, Single 5V or ±5V Supply
LTC1400	12	400ksps	High Speed Serial I/O in SO-8 Package
LTC1405	12	5ksps	5V or ±5V Supply, Input PGA, Pin Compatible with LTC1420