1 - and 2-Channel ADCs in MSOP

November 2001

feATURES

- 16-Bit 250ksps ADCs in MSOP Package
- Single 5V Supply
- Low Supply Current: 850 mA (Typ)
- Auto Shutdown Reduces Supply Current to $2 \mu \mathrm{~A}$ at 1 ksps
- True Differential Inputs
- 1-Channel (LTC1864) or 2-Channel (LTC1865) Versions
- SPI/MICROWIRE ${ }^{\text {TM }}$ Compatible Serial I/O
- 16-Bit Upgrade to 12-Bit LTC1286/LTC1298
- Pin Compatible with 12-Bit LTC1860/LTC1861

APPLICATIONS

- High Speed Data Acquisition
- Portable or Compact Instrumentation
- Low Power Battery-Operated Instrumentation
- Isolated and/or Remote Data Acquisition

DESCRIPTION

The LTC ${ }^{\circledR}$ 1864/LTC1865 are 16-bit A/D converters that are offered in MSOP and SO-8 packages and operate on a single 5 V supply. At 250 ksps , the supply current is only $850 \mu \mathrm{~A}$. The supply current drops at lower speeds because the LTC1864/LTC1865 automatically power down to a typical supply current of 1 nA between conversions. These 16-bit switched capacitor successive approximation ADCs include sample-and-holds. The LTC1864 has a differential analog input with an adjustable reference pin. The LTC1865 offers a software-selectable 2-channel MUX and an adjustable reference pin on the MSOP version.

The 3-wire, serial I/O, MSOP or SO-8 package and extremely high sample rate-to-power ratio make these ADCs ideal choices for compact, low power, high speed systems.

These ADCs can be used in ratiometric applications or with external references. The high impedance analog inputs and the ability to operate with reduced spans down to 1 V full scale, allow direct connection to signal sources in many applications, eliminating the need for external gain stages.

[^0]
TYPICAL APPLICATION

Single 5V Supply, 250ksps, 16-Bit Sampling ADC

Supply Current vs Sampling Frequency

LTC 1864/LTC1865

ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)
Supply Voltage (V_{CC})
Ground Voltage Difference
AGND, DGND LTC1865 MSOP Package $\pm 0.3 \mathrm{~V}$
Analog Input \qquad (GND - 0.3V) to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Digital Input \qquad (GND - 0.3V) to 7 V
Digital Output \qquad (GND - 0.3V) to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)

Power Dissipation
400mW
Operating Temperature Range
LTC1864C/LTC1865C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1864I/LTC1865I $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)
$300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

	$\begin{gathered} \text { ORDE } \\ \text { NUI } \end{gathered}$	PART ER		ORDER PARTNUMBERLTC1865CMSLTC1865IMSLTC1865ACMSLTC1865AIMS	
	LTC1864CMS8 LTC1864IMS8 LTC1864ACMS8 LTC1864AIMS8				
	MS8 PART MARKING			MS PART MARKING	
	LTHQ LTHR	LTVL LTVM		LTHS LTHT	LTVN LTVP
	ORDER PART NUMBER			ORDER PART NUMBER	
	LTC1864CS8 LTC1864IS8 LTC1864ACS8 LTC1864AIS8			LTC1865CS8 LTC1865IS8 LTC1865ACS8 LTC1865AIS8	
	S8 PART MARKING			S8 PART MARKING	
	$\begin{aligned} & 1864 \\ & 1864 \mid \end{aligned}$	$\begin{aligned} & \text { 1864A } \\ & \text { 1864AI } \end{aligned}$		$\begin{aligned} & 1865 \\ & 1865 \mid \end{aligned}$	$\begin{aligned} & \text { 1865A } \\ & \text { 1865AI } \end{aligned}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.

CONVERTEß AnD MULTIPLEXEß CHAßACTERISTICS

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $V_{C C}=5 V, V_{\text {REF }}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{SCK}}=\mathrm{f}_{\mathrm{SCK}(\mathrm{MAX})}$ as defined in Recommended Operating Conditions, unless otherwise noted.

CONVERTER AND MULTIPLEXER CHARACTERISTICS

The - denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $V_{C C}=5 V, V_{\text {REF }}=5 V$, $\mathrm{f}_{\text {SCK }}=\mathrm{f}_{\mathrm{SCK}(\text { MAX })}$ as defined in Recommended Operating Conditions, unless otherwise noted.

PARAMETER	CONDITIONS		LTC1864/LTC1865			LTC1864A/LTC1865A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Absolute Input Range	IN+ Input IN- Input		$\begin{aligned} & -0.05 \\ & -0.05 \end{aligned}$		$\begin{gathered} V_{\text {CC }}+0.05 \\ V_{\text {CC }} / 2 \end{gathered}$	$\begin{aligned} & -0.05 \\ & -0.05 \end{aligned}$		$\begin{gathered} V_{C C}+0.05 \\ V_{C C} / 2 \end{gathered}$	V
VREF Input Range (LTC1864/LTC1865MS)	LTC1864 S0-8 and MSOP, LTC1865 MSOP		1		$\mathrm{V}_{\text {CC }}$	1		$\mathrm{V}_{\text {CC }}$	V
Analog Input Leakage Current	(Note 4)	\bullet			± 1			± 1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$ Input Capacitance	In Sample Mode During Conversion			$\begin{gathered} 12 \\ 5 \end{gathered}$			$\begin{gathered} 12 \\ 5 \end{gathered}$		pF

DYПค円ПC ACCURACY The e denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{f}_{\text {SAMPLE }}=250 \mathrm{kHz}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	LTC1864/LTC1865		UNITS
			MIN TYP	MAX	
SNR	Signal-to-Noise Ratio		87		dB
$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Signal-to-Noise Plus Distortion Ratio	10kHz Input Signal 100kHz Input Signal	$\begin{aligned} & 83 \\ & 76 \end{aligned}$		dB dB
THD	Total Hamonic Distortion Up to 5th Harmonic	10kHz Input Signal 100kHz Input Signal	$\begin{aligned} & 88 \\ & 77 \end{aligned}$		dB dB
	Full Power Bandwidth		20		MHz
	Full Linear Bandwidth	$S /(N+D) \geq 75 d B$	125		kHz

DIGITAL AחD DC ELECTRICAL CHARACTERISTICS The e denotes specitications which apply

 over the full operating temperature range, otherwise specifications are $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}$, unless otherwise noted.| SYMBOL | PARAMETER | CONDITION | | LTC1864/LTC1865 | | | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | MIN | TYP | MAX | |
| $\mathrm{V}_{\text {IH }}$ | High Level Input Voltage | $V_{\text {CC }}=5.25 \mathrm{~V}$ | \bullet | 2.4 | | | V |
| VIL | Low Level Input Voltage | $V_{\text {CC }}=4.75 \mathrm{~V}$ | \bullet | | | 0.8 | V |
| $\underline{\underline{1 H}}$ | High Level Input Current | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ | \bullet | | | 2.5 | $\mu \mathrm{A}$ |
| IIL | Low Level Input Current | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ | \bullet | | | -2.5 | $\mu \mathrm{A}$ |
| V_{OH} | High Level Output Voltage | $\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, I_{0}=10 \mu \mathrm{~A} \\ & V_{C C}=4.75 \mathrm{~V}, I_{0}=360 \mu \mathrm{~A} \end{aligned}$ | \bullet | $\begin{aligned} & 4.5 \\ & 2.4 \end{aligned}$ | $\begin{aligned} & 4.74 \\ & 4.72 \end{aligned}$ | | V |
| $\mathrm{V}_{\text {OL }}$ | Low Level Output Voltage | $\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{0}=1.6 \mathrm{~mA}$ | \bullet | | | 0.4 | V |
| $\underline{102}$ | Hi-Z Output Leakage | CONV $=\mathrm{V}_{\text {CC }}$ | \bullet | | | ± 3 | $\mu \mathrm{A}$ |
| ISOURCE | Output Source Current | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ | | | -25 | | mA |
| ISINK | Output Sink Current | $V_{\text {OUT }}=V_{\text {CC }}$ | | | 20 | | mA |
| $\mathrm{I}_{\text {REF }}$ | Reference Current (LTC1864 S0-8 and MSOP, LTC1865 MSOP) | $\begin{aligned} & \text { CONV }=V_{\text {CC }} \\ & f_{\text {SMPL }}=f_{\text {SMPL(MAX })} \end{aligned}$ | \bullet | | $\begin{gathered} 0.001 \\ 0.05 \end{gathered}$ | $\begin{gathered} 3 \\ 0.1 \end{gathered}$ | $\mu \mathrm{A}$ mA |
| $I_{C C}$ | Supply Current | $\begin{aligned} & \text { CONV }=V_{\text {CC }} \text { After Conversion } \\ & \mathrm{f}_{\text {SMPL }}=\mathrm{f}_{\text {SMPL (MAX }} \end{aligned}$ | \bullet | | $\begin{gathered} 0.001 \\ 0.85 \end{gathered}$ | $\begin{gathered} 3 \\ 1.3 \end{gathered}$ | $\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$ |
| $\underline{P_{D}}$ | Power Dissipation | $\mathrm{f}_{\text {SMPL }}=\mathrm{f}_{\text {SMPL(MAX }}$ | | | 4.25 | | mW |

full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS		LTC1864/LTC1865		UNITS
				MIN	MAX	
$\mathrm{V}_{\text {c }}$	Supply Voltage			4.75	5.25	V
$\mathrm{V}_{\text {cC }}=5 \mathrm{~V}$						
$\mathrm{fsck}^{\text {frem }}$	Clock Frequency		\bullet	DC	20	MHz
$\mathrm{t}_{\mathrm{CYC}}$	Total Cycle Time			$16 \cdot$ SC		$\mu \mathrm{s}$
$\mathrm{t}_{\text {SMPL }}$	Analog Input Sampling Time	LTC1864 LTC1865		$\begin{aligned} & 16 \\ & 14 \end{aligned}$		$\begin{aligned} & \text { SCK } \\ & \text { SCK } \end{aligned}$
$\mathrm{t}_{\text {suCONV }}$	Setup Time CONV \downarrow Before First SCK \uparrow (See Figure 1)			30		ns
thDI	Hold Time SDI After SCK \uparrow	LTC1865		15		ns
$\mathrm{t}_{\text {suDI }}$	Setup Time SDI Stable Before SCK \uparrow	LTC1865		15		ns
twhCLK	SCK High Time	$\mathrm{f}_{\text {SCK }}=\mathrm{f}_{\text {SCK }}($ MAX $)$		40\%		1/fsCK
twLCLK	SCK Low Time	$\mathrm{f}_{\text {SCK }}=\mathrm{f}_{\text {SCK }}($ MAX $)$		40\%		1/fsck
twhconv	CONV High Time Between Data Transfer Cycles			tconv		$\mu \mathrm{S}$
twlconv	CONV Low Time During Data Transfer			16		SCK
thCONV	Hold Time CONV Low After Last SCK \uparrow			13		ns

TIMING CHARACTERISTICS The denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{SCK}}=\mathrm{f}_{\mathrm{SCK}}(\mathrm{MAX})$ as defined in Recommended Operating Conditions, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LTC1864/LTC1865			UNITS
				MIN	TYP	MAX	
$\mathrm{t}_{\text {CONV }}$	Conversion Time (See Figure 1)		\bullet		2.75	3.2	$\mu \mathrm{S}$
$\mathrm{f}_{\text {SMPL(MAX) }}$	Maximum Sampling Frequency		\bullet	250			kHz
$\mathrm{t}_{\mathrm{dDO}}$	Delay Time, SCK \downarrow to SDO Data Valid	$C_{\text {LOAD }}=20 \mathrm{pF}$	\bullet		15	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	ns
$\mathrm{t}_{\text {dis }}$	Delay Time, CONV \uparrow to SDO Hi-Z		\bullet		30	60	ns
$\mathrm{t}_{\text {en }}$	Delay Time, CONV \downarrow to SDO Enabled	$C_{\text {LOAD }}=20 \mathrm{pF}$	\bullet		30	60	ns
thDO	Time Output Data Remains Valid After SCK \downarrow	$C_{\text {LOAD }}=20 \mathrm{pF}$	\bullet	5	10		ns
tr_{r}	SDO Rise Time	$C_{\text {LOAD }}=20 \mathrm{pF}$			8		ns
t_{f}	SDO Fall Time	$C_{\text {LOAD }}=20 \mathrm{pF}$			4		ns

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to GND.

Note 3: Integral nonlinearity is defined as deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.
Note 4: Channel leakage current is measured while the part is in sample mode.

PIn functions

LTC1864

$\mathrm{V}_{\text {REF }}$ (Pin 1): Reference Input. The reference input defines the span of the A/D converter and must be kept free of noise with respect to GND.
$\mathbf{I N}^{+}$, $\mathbf{I N}^{-}$(Pins 2, 3): Analog Inputs. These inputs must be free of noise with respect to GND.
GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane.
CONV (Pin 5): Convert Input. A logic high on this input starts the A / D conversion process. If the CONV input is left high after the A / D conversion is finished, the part powers

LTC1865 (MSOP Package)

CONV (Pin 1): Convert Input. A logic high on this input starts the A/D conversion process. If the CONV input is left high after the A/D conversion is finished, the part powers down. A logic low on this input enables the SDO pin, allowing the data to be shifted out.
CHO, CH1 (Pins 2, 3): Analog Inputs. These inputs must be free of noise with respect to AGND.
AGND (Pin 4): Analog Ground. AGND should be tied directly to an analog ground plane.
DGND (Pin 5): Digital Ground. DGND should be tied directly to an analog ground plane.
SDI (Pin 6): Digital Data Input. The A/D configuration word is shifted into this input.

LTC1865 (S0-8 Package)

CONV (Pin 1): Convert Input. A logic high on this input starts the A/D conversion process. If the CONV input is left high after the A/D conversion is finished, the part powers down. A logic low on this input enables the SDO pin, allowing the data to be shifted out.
CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must be free of noise with respect to GND.
GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane.
down. A logic low on this input enables the SDO pin, allowing the data to be shifted out.
SDO (Pin 6): Digital Data Output. The A/D conversion result is shifted out of this pin.
SCK (Pin 7): Shift Clock Input. This clock synchronizes the serial data transfer.
$\mathrm{V}_{\text {cc }}$ (Pin 8): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane.

SDO (Pin 7): Digital Data Output. The A/D conversion result is shifted out of this output.

SCK (Pin 8): Shift Clock Input. This clock synchronizes the serial data transfer.
$\mathrm{V}_{\text {cc }}$ (Pin 9): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane.
$\mathrm{V}_{\text {REF }}$ (Pin 10): Reference Input. The reference input defines the span of the A/D converter and must be kept free of noise with respect to AGND.

SDI (Pin 5): Digital Data Input. The A/D configuration word is shifted into this input.
SDO (Pin 6): Digital Data Output. The A/D conversion result is shifted out of this output.
SCK (Pin 7): Shift Clock Input. This clock synchronizes the serial data transfer.
$V_{\text {cc }}$ (Pin 8): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane. $V_{\text {REF }}$ is tied internally to this pin.

TEST CIRCUITS

Load Circuit for $t_{d D O}, t_{r}, t_{f}, t_{\text {dis }}$ and $t_{\text {en }}$

Voltage Waveforms for SDO Delay Time, $\mathrm{t}_{\mathrm{d} D 0}$

Voltage Waveforms for SDO Rise and Fall Times, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$

Voltage Waveforms for $\mathrm{t}_{\text {dis }}$

NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL

APPLICATIONS INFORMATION

LTC1864 Operating Sequence

The LTC1864 conversion cycle begins with the rising edge of CONV. After a period equal to $\mathrm{t}_{\mathrm{CONV}}$, the conversion is finished. If CONV is left high after this time, the LTC1864 goes into sleep mode. On the falling edge of CONV, the LTC1864 goes into sample mode and SDO is enabled. SCK synchronizes the data transfer with each bit being transmitted from SDO on the falling SCK edge. The receiving system should capture the data from SDO on the rising edge of SCK. After completing the data transfer, if further SCK clocks are applied with CONV Iow, SDO will output zeros indefinitely. See Figure 1.

Analog Inputs

The LTC1864 has a unipolar differential analog input. The converter will measure the voltage between the "IN ${ }^{+}$" and "IN-" inputs. A zero code will occur when IN^{+}minus IN^{-} equals zero. Full scale occurs when IN^{+}minus IN^{-}equals $V_{\text {REF }}$ minus 1 LSB . See Figure 2. Both the "IN+" and " IN^{-}" inputs are sampled at the same time, so common mode noise on the inputs is rejected by the ADC. If "IN-" is grounded and $\mathrm{V}_{\mathrm{REF}}$ is tied to V_{CC}, a rail-to-rail input span will result on " $\mathrm{I} \mathrm{N}^{+}$" as shown in Figure 3.

Reference Input

The voltage on the reference input of the LTC1864 defines the full-scale range of the A/D converter. The LTC1864 can operate with reference voltages from V_{CC} to 1 V .

Figure 1. LTC1864 Operating Sequence

Figure 2. LTC1864 Transfer Curve

Figure 3. LTC1864 with Rail-to-Rail Input Span

LTC 1864/LTC1865

APPLICATIONS InFORMATION

LTC1865 Operating Sequence

The LTC1865 conversion cycle begins with the rising edge of CONV. After a period equal to $\mathrm{t}_{\text {conv }}$, the conversion is finished. If CONV is left high after this time, the LTC1865 goes into sleep mode. The LTC1865's 2-bit data word is clocked into the SDI input on the rising edge of SCK after CONV goes low. Additional inputs on the SDI pin are then ignored until the next CONV cycle. The shift clock (SCK) synchronizes the data transfer with each bit being transmitted on the falling SCK edge and captured on the rising SCK edge in both transmitting and receiving systems. The data is transmitted and received simultaneously (full duplex). After completing the data transfer, if further SCK clocks are applied with CONV Iow, SDO will output zeros indefinitely. See Figure 4.

Analog Inputs

The two bits of the input word (SDI) assign the MUX configuration for the requested conversion. For a given channel selection, the converter will measure the voltage between the two channels indicated by the " + " and " - " signs in the selected row of the following table. In single-ended mode, all input channels are measured with
respect to GND. A zero code will occur when the " + " input minus the "-" input equals zero. Full scale occurs when the " + " input minus the "-" input equals $V_{\text {REF }}$ minus 1LSB. See Figure 5. Both the " + " and " - " inputs are sampled at the same time so common mode noise is rejected. The input span in the SO-8 package is fixed at $V_{\text {REF }}=V_{\text {CC }}$. If the "-" input in differential mode is grounded, a rail-to-rail input span will result on the " + " input.

Reference Input

The reference input of the LTC1865 S0-8 package is internally tied to $V_{C C}$. The span of the A/D converter is therefore equal to V_{Cc}. The voltage on the reference input of the LTC1865 MSOP package defines the span of the A/D converter. The LTC1865 MSOP package can operate with voltages from 1 V to V_{CC}.

Table 1. Multiplexer Channel Selection

	MUX ADDRESS		CHANNEL \#		GND
	SGL/DIFF	ODD/SIGN	0	1	
SINGLE-ENDED	1	0	+		-
MUX MODE	1	1		+	-
DIFFERENTIAL	0	0	+	-	
MUX MODE	0	1	-	+	

Figure 4. LTC1865 Operating Sequence

APPLICATIONS INFORMATION

general analog considerations

Grounding

The LTC1864/LTC1865 should be used with an analog ground plane and single point grounding techniques. Do not use wire wrapping techniques to breadboard and evaluate the device. To achieve the optimum performance, use a printed circuit board. The ground pins (AGND and DGND for the LTC1865 MSOP package and GND for the LTC1864 and LTC1865 S0-8 package) should be tied directly to the analog ground plane with minimum lead length.

Bypassing

For good performance, the $\mathrm{V}_{\text {CC }}$ and $\mathrm{V}_{\text {REF }}$ pins must be free of noise and ripple. Any changes in the $\mathrm{V}_{\mathrm{CC}} / V_{\text {REF }}$ voltage with respect to ground during the conversion cycle can
induce errors or noise in the output code. Bypass the $\mathrm{V}_{C C}$ and $V_{\text {REF }}$ pins directly to the analog ground plane with a minimum of $1 \mu \mathrm{~F}$ tantalum. Keep the bypass capacitor leads as short as possible.

Analog Inputs

Because of the capacitive redistribution A / D conversion techniques used, the analog inputs of the LTC1864/ LTC1865 have capacitive switching input current spikes. These current spikes settle quickly and do not cause a problem if source resistances are less than 200Ω or high speed op amps are used (e.g., the LT ${ }^{\oplus} 1211$, LT1469, LT1807, LT1810, LT1630, LT1226 or LT1215). But if large source resistances are used, or if slow settling op amps drive the inputs, take care to ensure the transients caused by the current spikes settle completely before the conversion begins.

Figure 5. LTC1865 Transfer Curve

MS8 Package
8-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1660)

NOTE:

. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.

INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102 mm (.004") MAX

MS Package
10-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1661)

NOTE:

1. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE

4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.

INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX

PACKAGE DESCRIPTION

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}$ (0.254 mm) PER SIDE

LTC 1864/LTC1865

RELATED PARTS

PART NUMBER	SAMPLE RATE	POWER DISSIPATION	DESCRIPTION
8-Bit Serial I/O ADCs			
LTC1096/LTC1096L	15ksps	0.9 mW	1-Channel, Unipolar Operation, 5V/3V
LTC1098/LTC1098L	15ksps	0.6 mW	2-Channel, Unipolar Operation, 5V/3V
LTC1196	1Msps	20 mW	1-Channel, Unipolar Operation with Reference Input, 5V/3V
LTC1198	750ksps	20 mW	2-Channel, Unipolar Operation, 5V/3V
10-Bit Serial I/O ADCs			
LTC1197/LTC1197L	500ksps/250ksps	22.5 mW	S0-8, MS8, 1-Channel, 5V/3V
LTC1199/LTC1199L	450ksps/210ksps	25 mW	SO-8, MS8, 2-Channel, 5V/3V
12-Bit Serial I/O ADCs			
LTC1286/LTC1298	12.5ksps/11.1 ksps	$1.3 \mathrm{~mW} / 1.7 \mathrm{~mW}$	1-Channel with Reference (LTC1286), 2-Channel (LTC1298), 5V
LTC1400	400ksps	75 mW	1-Channel, Bipolar or Unipolar Operation, Internal Reference, 5V
LTC1401	200ksps	15 mW	S0-8 with Reference, 3V
LTC1402	2.2Msps	90 mW	Serial I/O, Bipolar or Unipolar, Internal Reference
LTC1404	600ksps	25 mW	S0-8 with Reference, Bipolar or Unipolar, 5V
LTC1860/LTC1861	250ksps	4.25 mW	S0-8, MS8, 1-Channel, 5V/S0-8, MS10, 2-Channel, 5V
14-Bit Serial I/O ADCs			
LTC1417	400ksps	20 mW	16-Pin SSOP, Unipolar or Bipolar, Reference, 5V
LTC1418	200ksps	15 mW	Serial/Parallel I/0, Internal Reference, 5V
16-Bit Serial I/O ADCs			
LTC1609	200ksps	65 mW	Configurable Bipolar or Unipolar Input Ranges, 5V

PART NUMBER	DESCRIPTION	COMMENTS
References		
LT1460	Micropower Precision Series Reference	Bandgap, $130 \mu \mathrm{~A}$ Supply Current, $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, Available in SOT-23
LT1790	Micropower Low Dropout Reference	$60 \mu \mathrm{~A}$ Supply Current, $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, SOT-23
Op Amps		
LT1468/LT1469	Single/Dual 90MHz, 16-Bit Accurate Op Amps	22V/ $/$ s Slew Rate, $75 \mu \mathrm{~V} / 125 \mu \mathrm{~V}$ Offset
LT1806/LT1807	Single/Dual 325MHz Low Noise Op Amps	140V/us Slew Rate, 3.5nV/ $\sqrt{\mathrm{Hz}}$ Noise, -80dBc Distortion
LT1809/LT1810	Single/Dual 180MHz Low Distortion Op Amps	$350 \mathrm{~V} / \mu \mathrm{S}$ Slew Rate, -90 dBc Distortion at 5MHz

[^0]: $\overline{\boldsymbol{\Sigma}}$, LTC and LT are registered trademarks of Linear Technology Corporation.
 MICROWIRE is a trademark of National Semiconductor Corporation.

