

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

Bi-CMOS LSI LV5696P — For Car Audio Systems **Multi-Power Supply IC**

Overview

LV5696P is a multiple voltage regulator for car audio system. This IC has 6 system of voltage regulators, 3.3/5.0Voutput for a microcontroller, 8.0V output for CD driver, 3V-8V (Adjustable) output for illuminations, 8.5V output for audio control, 5V output for SYS control, 3.3V output for DSP control and 1 high side switch output for ANT output.

About protection circuits, it has Over-current-protection, Over-voltage-protection and Thermal-shut-down.

Features

- Low current consumption : typ 50µA
- 6 system of regulators

VDD (Micon) : VOUT 3.3/5.0V, IOUT MAX 200mA

- CD : VOUT 8.0V, IOUT MAX 1000mA
- Illumination : VOUT 3.0V to 8.0V (Adjustable external resistors), IOUT MAX 200mA
- : VOUT 8.5V, IOUT MAX 300mA Audio
- SYS : VOUT 5.0V, IOUT MAX 500mA
- DSP : VOUT 3.3V, IOUT MAX 800mA
- 1 high-side switch coupled V_{CC}
 - ANT : IOUT MAX 200mA, VCC-VOUT = 0.5V
- Over current protection
- Over voltage protection typ 21V (All outputs except for VDD are turned off)
- Thermal shut down circuit typ 175°C
- Applied P-LDMOS to output stage

(Warning) The protector functions only improve the IC's tolerance and they do not guarantee the safety of the IC if used under the conditions out of safety range or ratings. Use of the IC such as use under overcurrent protection range, thermal shutdown state may degrade the IC's reliability and eventually damage the IC.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc., please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co., Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Specifications

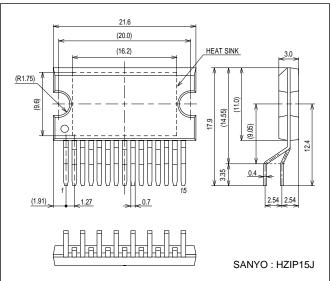
Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		36	V
Power dissipation	Pd max	IC Unit	1.5	W
		At using AI heat sink of (50×50×1.5mm ³)	5.6	W
		Infinite large heat sink	32.5	W
Peak voltage	V _{CC} peak	See below about Pulse wave	50	V
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +150	°C
Junction maximum temperature	Tj max		150	°C

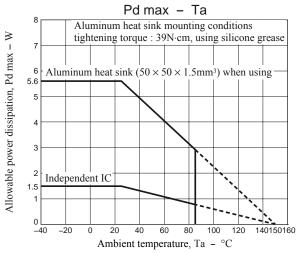
Recommended Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Conditions	Ratings	Unit
Power supply voltage rating 1	V _{DD} output, ANT output	7.5 to 16	V
Power supply voltage rating 2	AUDIO output	10.5 to 16	V
Power supply voltage rating 3	CD output, ILM output, SYS output, DSP output	10 to 16	V

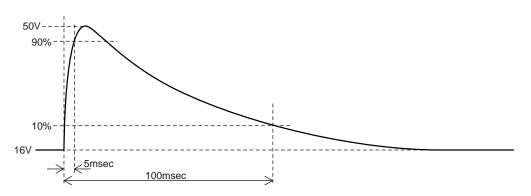
*Make sure that V_CC1 is as follows: V_CC1 > V_CC - 0.7V


Electrical Characteristics at Ta = 25° C, V_{CC} = V_{CC}1 = 14.4V

Daramatar	Sumbol	Conditions		Ratings		Unit
Parameter	Symbol	Symbol		typ	max	Unit
Quiescent current I_{CC} V_{DD} No Load, CTRL1/2/3 = $\lceil L \rceil$		V_{DD} No Load, CTRL1/2/3 = $\lfloor L/L/L \rfloor$		50	100	μA
CTRL1 (ANT)						
Low input voltage	V _{IL} 1	ANT: OFF	0		0.3	V
High input voltage	V _{IH} 1	ANT: ON	2.7	3.3	5.5	V
Input impedance	R _{IN} 1	input voltage ≤ 3.3V	280	400	520	kΩ
CTRL2 (ILM)						
Low input voltage	V _{IL} 2	ILM: OFF	0		0.3	V
High input voltage	V _{IH} 2	ILM: ON	2.7	3.3	5.5	V
Input impedance	R _{IN} 2	input voltage ≤ 3.3V	280	400	520	kΩ
CTRL3	·	•	<u> </u>		•	
Low input voltage	V _{IL} 3	CD, AUDIO, SYS5V, DSP: OFF	0		0.3	V
Middle input voltage	V _{IM} 3	CD, DSP:OFF	1.3	1.65	2.0	V
		SYS5V, AUDIO: ON				
High input voltage	V _{IH} 3	CD, AUDIO, SYS5V, DSP: ON	2.7	3.3	5.5	V
Input impedance	R _{IN} 3	input voltage ≤ 3.3V	280	400	520	kΩ
V _{DD} output 5.0V/3.3V -ON ;	$IKV_{DD} = V_{CC}1 : V$	_{DD} = 5V/IKV _{DD} = GND : V _{DD} = 3.3V				
V _{DD} output voltage 1	V _O 1	$I_{O}1 = 200$ mA, IKV _{DD} = V _{CC} 1	4.75	5.0	5.25	V
V _{DD} output voltage 2	V _O 1'	$I_O 1 = 200 \text{mA}, \text{IKV}_{DD} = \text{GND}$	3.13	3.3	3.47	V
V _{DD} output current	I _O 1		200			mA
Line regulation	ΔV_{OLN} 1	$7.5V < V_{CC} < 16V, I_{O}1 = 200mA$		30	100	mV
Load regulation	ΔV_{OLD} 1	1mA < I _O 1 < 200mA		70	150	mV
Dropout voltage 1	V _{DROP} 1	I _O 1 = 200mA		1.0	1.5	V
Dropout voltage 2	V _{DROP} 1'	I _O 1 = 100mA		0.5	0.75	V
Ripple rejection	R _{REJ} 1	f = 120Hz, I _O 1 = 200mA	40	50		dB
CD output 8.0V-ON ; CTRL3	s=[H]		· · ·			
CD output voltage	V _O 2	I _O 2 = 1000mA	7.6	8.0	8.4	V
CD output current	I _O 2		1000			mA
Line regulation	ΔV_{OLN2}	$10.5V < V_{CC} < 16V, I_O3 = 1000mA$		50	100	mV
Load regulation	$\Delta V_{OLD}2$	10mA < I _O 2 < 1000mA		100	200	mV
Dropout voltage 1	V _{DROP} 2	I _O 2 = 1000mA		1.0	1.5	V
Dropout voltage 2	V _{DROP} 2'	$I_{O}^{2} = 500 \text{mA}$		0.5	0.75	V
Ripple rejection	R _{REJ} 2	f = 120Hz, I _O 2 = 1000mA	40	50		dB

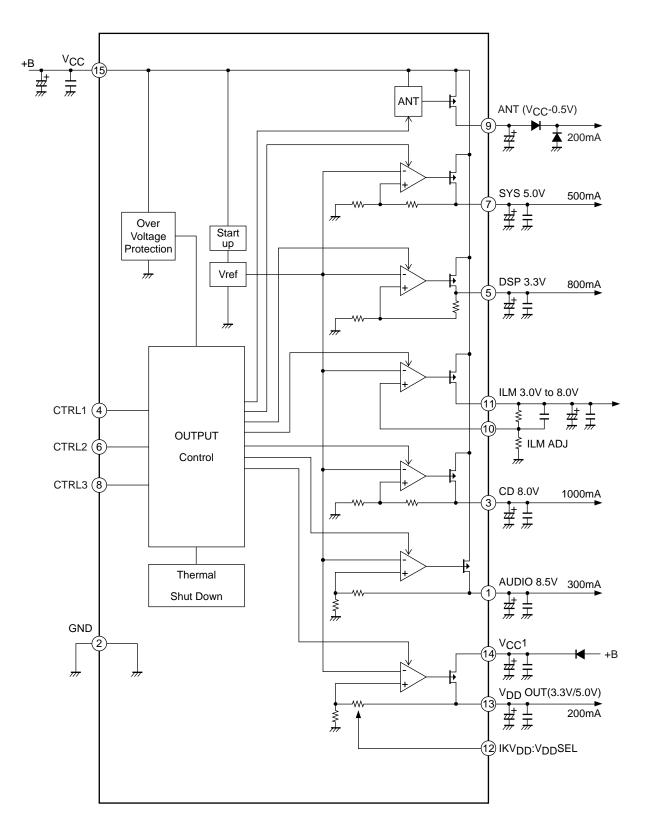

Parameter	Symbol	Conditions		Ratings		Unit	
Parameter	Symbol	Symbol		typ	max	Unit	
ILM output 3.0 to 8.0V-ON ;	; CTRL2 = [H]						
ILM_ADJ voltage	V _I 3		1.222	1.260	1.298	V	
ILM_ADJ current	I _{IN} 3		-1		1	μA	
ILM output voltage1	V _O 3	$I_03 = 200$ mA, R1 = 300 k Ω , R2 = 56 k Ω	7.65	8.0	8.35	V	
ILM output voltage2	V _O 3'	$I_03 = 200$ mA, R1 = 51k Ω , R2 = 36k Ω	2.86	3.0	3.14	V	
ILM output current	I _O 3	$R1 = 300k\Omega$, $R2 = 56k\Omega$	200			mA	
Line regulation	∆V _{OLN} 3	$10.5V < V_{CC} < 16V, I_{O}4 = 200mA$		30	90	mV	
Load regulation	۵V _{OLD} 3	1mA < I _O 3 < 200mA		70	150	mV	
Dropout voltage 1	V _{DROP} 3	I _O 3 = 200mA		0.7	1.05	V	
Dropout voltage 2	V _{DROP} 3'	I _O 3 = 100mA		0.35	0.53	V	
Ripple rejection	R _{REJ} 3	f = 120Hz, I _O 4 = 200mA	40	50		dB	
AUDIO output 8.5V-ON ; C	TRL3 = [M or H]						
AUDIO output voltage	V _O 4	I _O 4 = 300mA	8.07	8.5	8.93	V	
AUDIO output current	I _O 4		300			mA	
Line regulation	ΔV _{OLN} 4	$10.5V < V_{CC} < 16V, I_{O}4 = 300mA$		30	90	mV	
Load regulation	$\Delta V_{OLD}4$	1mA < I _O 4 < 300mA		70	150	mV	
Dropout voltage 1	VDROP ⁴	I _O 4 = 200mA		0.7	1.05	V	
Dropout voltage 2	V _{DROP} 4'	$I_{O}4 = 100 \text{mA}$		0.35	0.53	V	
Ripple rejection	R _{REJ} 4	f = 120Hz, I _O 4 = 300mA	40	50		dB	
SYS output 5.0V-ON ; CTR	L3 = M or H						
SYS output voltage	V _O 5	I _O 5 = 500mA	4.75	5.0	5.25	V	
SYS output current	IO2		500			mA	
Line regulation	∆V _{OLN} 5	$10.5V < V_{CC} < 16V, I_{O5} = 500mA$		30	90	mV	
Load regulation	$\Delta V_{OLD} 5$	1mA < I _O 5 < 500mA		70	150	mV	
Dropout voltage	V _{DROP} 5	I _O 5 = 500mA		1.3	2.5	V	
Ripple rejection	R _{REJ} 5	f = 120Hz, I _O 5 = 500mA	40	50		dB	
DSP output 3.3V-ON ; CTR	L3 = [H]						
DSP output voltage	V _O 6	I _O 6 = 800mA	3.13	3.3	3.47	V	
DSP output current	I _O 6		800			mA	
Line regulation	ΔV _{OLN} 6	$10.5V < V_{CC} < 16V, I_{O}6 = 800mA$		30	90	mV	
Load regulation	ΔV _{OLD} 6	1mA < I _O 6 < 800mA		70	150	mV	
Dropout voltage	V _{DROP} 6	I _O 6 = 800mA		1.5	3.0	V	
Ripple rejection	R _{REJ} 6	f = 120Hz, I _O 6 = 800mA	40	50		dB	
ANT Remote-ON ; CTRL1 =	·[H]			•			
Output voltage	V _O 7	I _O 7 = 200mA	V _{CC} -1.0	V _{CC} -0.5		V	
Output current	1 ₀ 7	$V_{O7} \ge V_{CC}$ -1.0	200			mA	

Package Dimensions



• Allowable power dissipation derating curve

• Peak Voltage testing pulse wave

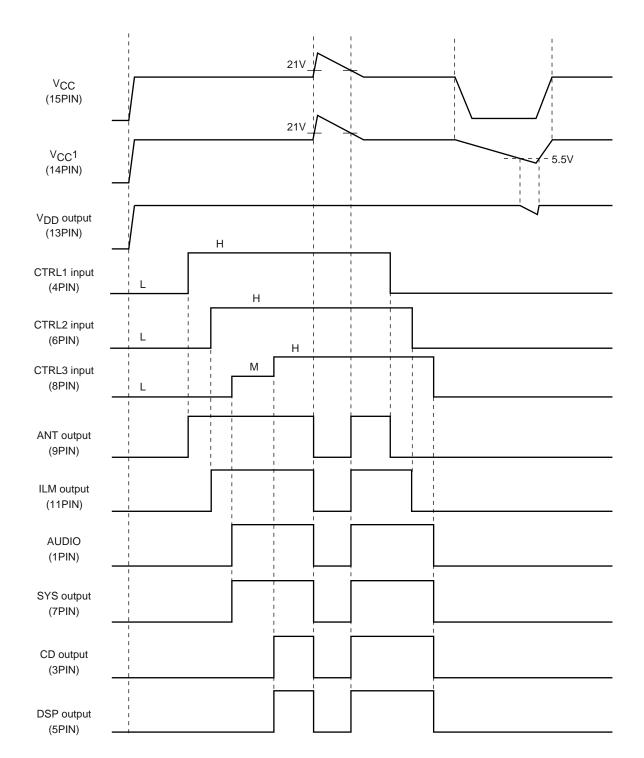

CTRL logic truth table

CTRL1	ANT
L	OFF
Н	ON

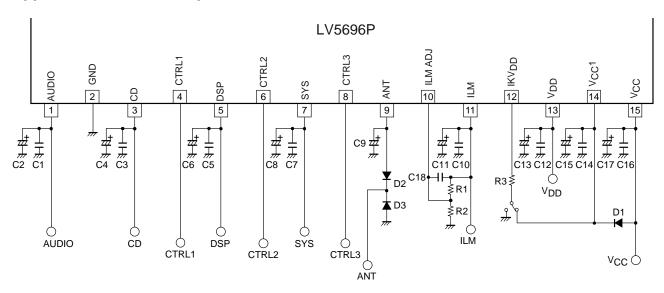
CTRL2	ILM
L	OFF
Н	ON

CTRL3	AUDIO	SYS	CD	DSP
L	OFF	OFF	OFF	OFF
М	ON	ON	OFF	OFF
Н	ON	ON	ON	ON

Block Diagram



Pin No.	Pin name	Description	Equivalent Circuit
1	AUDIO	AUDIO output pin CTRL3 = M, H-ON 8.5V/0.3A	(1)
2	GND	GND pin	
3	CD	CD output pin CTRL3 = H-ON 8.0V/1.0A	(15)
4	CTRL1	CTRL1 input pin Input of two values	$(15) VCC$ $(4) (10k\Omega) (10k\Omega)$
5	DSP	DSP output pin CTRL3 = H-ON 3.3V/0.8A	(15)

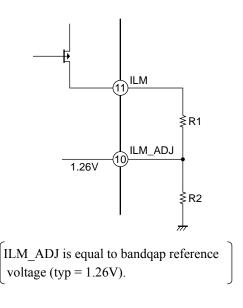

Pin No.	rom preceding pa Pin name	Description	Equivalent Circuit
6	CTRL2	CTRL2 input pin Input of two values	(15) (15) (15) (15) (10kΩ
7	SYS	SYS output pin CTRL3 = M, H-ON 5.0V/0.5A	(15)
8	CTRL3	CTRL3 input pin Input of three values	$ \begin{array}{c} 15 \\ \hline 10k\Omega \\ \hline 8 \\ \hline 400k\Omega \\ \hline 2 \\ \hline \end{array} $
9	ANT	ANT output pin CTRL1 = H-ON VCC-0.5V/0.2A	

Pin No.	Pin name	Description	Equivalent Circuit
10	ILM ADJ	ILM feedback pin	
11	ILM	ILM output pin CTRL2 = H-ON 3.0 to 8.0V/0.2A	
12	IKV _{DD}	V _{DD} Voltage switch control input pin V _{CC} 1/GND	$ \begin{array}{c} 14 \\ 5V \\ 4.75M\Omega \\ 65k\Omega \\ $
13	V _{DD}	V _{DD} output pin 5.0V/0.2A (IKV _{DD} = V _{CC} 1) 3.3V/0.2A (IKCD = GND)	(14)
14	V _{CC} 1	V _{DD} power supply pin	
15	V _{CC}	Power supply pin	

Timing Chart

Application circuit example

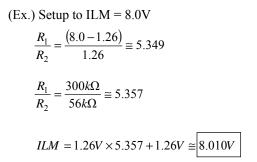
External Parts Lineup


Part name	Description	Recommended value	Note
C2, C4, C6, C8, C11, C13	Output stabilization capacitor	10µF or more (*1)	Electrolytic capacitor
C1, C3, C5, C7, C10, C12	Output stabilization capacitor	0.22µF or more (*1)	Ceramic capacitor
C18	Output stabilization capacitor	20pF	Ceramic capacitor
C15, C17	Bypass capacitor	100μF or more	Connect a capacitor as close as
C14, C16	Prevent oscillation capacitor	0.22µF or more	possible to V_{CC} pin and GND pin.
C9	Output stabilization capacitor	2.2µF or more	
R1, R2	Feedback resister	ILM output voltage R1/R2: 300kΩ/56kΩ = 8.0V R1/R2: 51kΩ/36kΩ = 3.0V	A resistor with resistance accuracy as low as less ±1% must be used.
R3	Protective resister	10 to 100kΩ	
D1	Backflow prevention diode		
D2, D3	Internal element Protection diode	SANYO SB1003M3	

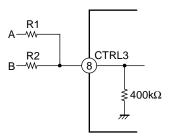
(*1) Make sure that output capacitors is 10μF or more and ESR 10Ω or less in total, in which voltage and temperature fluctuation and unit differences are taken into consideration. Moreover, high frequency characteristics of electrolytic capacitor should be sufficient.

Furthermore, the values listed above do not guarantee stabilization during the over current protection operations of the regulator, so oscillation may occur during an over current protection operation.

LV5696P


ILM output voltage setting method

ILM calculating formula

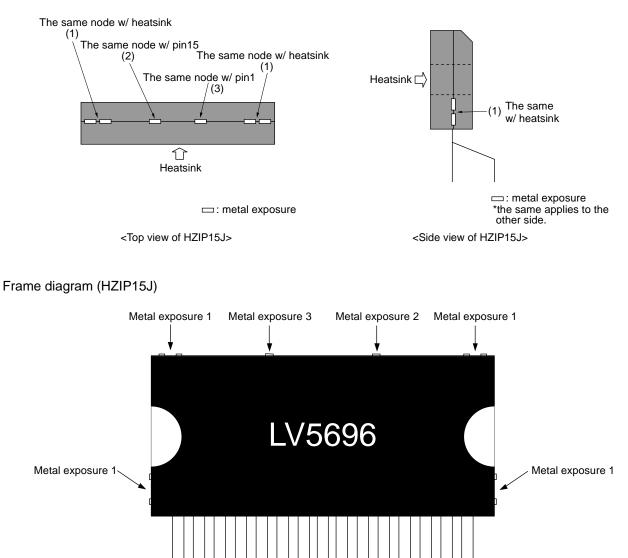

$$ILM = \frac{1.26[V]}{R_2} \times R_1 + 1.26[V]$$
$$\frac{R_1}{R_2} = \frac{(ILM - 1.26)}{1.26}$$

Please design so that the ratio of R1 and R2 may fill the above-mentioned expression for the set ILM voltage.

Note : The above-mentioned are all the values at the typical. The error margin of output voltage is caused by the influence of the manufacturing variations of IC and external resistance.

CTRL3 Application Circuit

Input 3.3V : $R1 = R2 = 47k\Omega$


А	В	CTRL3
0V	0V	0V
0V	3.3V	1.56V
3.3V	0V	1.56V
3.3V	3.3V	3.12V

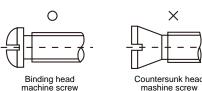
Warning: Implementing LV5696P to the set board

1PIN

The package of LV5696P is HZIP15J which has some metal exposures other than connection pins and heatsink as shown in the diagram below. The electrical potentials of (2) and (3) are the same as those of pin15 and pin1, respectively. (2) (= pin15) is the V_{CC} pin and (3) (= pin1) is the AUDIO (regulator) output pin. When you implement the IC to the set board, make sure that the bolts and the heatsink are out of touch from (2) and (3). If the metal exposures touch the bolts which has the same electrical potential with GND, GND short occurs in AUDIO output and V_{CC}. The exposures of (1) are connected to heatsink which has the same electrical potential with substrate of the IC chip (GND). Therefore, (1) and GND electrical potential of the set board can contact each other.

HZIP15J outline

No.A2159-12/14


15PIN


(Front view)

HZIP15J Heat sink attachment

Heat sinks are used to lower the semiconductor device junction temperature by leading the head generated by the device to the outer environment and dissipating that heat.

- a. Unless otherwise specified, for power ICs with tabs and power ICs with attached heat sinks, solder must not be applied to the heat sink or tabs.
- b. Heat sink attachment
 - Use flat-head screws to attach heat sinks.
 - Use also washer to protect the package.
 - Use tightening torques in the ranges 39-59Ncm (4-6kgcm).
 - If tapping screws are used, do not use screws with a diameter larger than the holes in the semiconductor device itself.
 - Do not make gap, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
 - Take care a position of via hole .
 - Do not allow dirt, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
 - Verify that there are no press burrs or screw-hole burrs on the heat sink.
 - Warping in heat sinks and printed circuit boards must be no more than
 - 0.05 mm between screw holes, for either concave or convex warping.Twisting must be limited to under 0.05 mm.
 - Heat sink and semiconductor device are mounted in parallel. Take care of electric or compressed air drivers
 - The speed of these torque wrenches should never exceed 700 rpm, and should typically be about 400 rpm.
- c. Silicone grease
 - Spread the silicone grease evenly when mounting heat sinks.
 - Sanyo recommends YG-6260 (Momentive Performance Materials Japan LLC)
- d. Mount
 - First mount the heat sink on the semiconductor device, and then mount that assembly on the printed circuit board.
 - When attaching a heat sink after mounting a semiconductor device into the printed circuit board, when tightening up a heat sink with the screw, the mechanical stress which is impossible to the semiconductor device and the pin doesn't hang.
- e. When mounting the semiconductor device to the heat sink using jigs, etc.,
 - Take care not to allow the device to ride onto the jig or positioning dowel.
 - Design the jig so that no unreasonable mechanical stress is not applied to the semiconductor device.
- f. Heat sink screw holes
 - Be sure that chamfering and shear drop of heat sinks must not be larger than the diameter of screw head used.
 - When using nuts, do not make the heat sink hole diameters larger than the diameter of the head of the screws used. A hole diameter about 15% larger than the diameter of the screw is desirable.
 - When tap screws are used, be sure that the diameter of the holes in the heat sink are not too small. A diameter about 15% smaller than the diameter of the screw is desirable.
- g. There is a method to mount the semiconductor device to the heat sink by using a spring band. But this method is not recommended because of possible displacement due to fluctuation of the spring force with time or vibration.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- Regarding monolithic semiconductors, if you should intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a confirmation.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of December, 2012. Specifications and information herein are subject to change without notice.