

SANYO Semiconductors

DATA SHEET

An ON Semiconductor Company

LV8080LP —

Two channels Constant-current H-bridge Driver

Overview

The LV8080LP is a two-channel constant-current driver that supports low-voltage operation. It is optimal for constant-current drive of stepping motors (AF and zoom) in portable equipment such as camera cell phones.

Bi-CMOS LSI

Features

- Two channels constant-current H-bridge driver
- Built-in power supply switch and position detection comparator for use with a photoreflector
- Supports both 2-phase drive and 1-2 phase drive.
- Implemented in a low-power MOS IC process.
- Ultraminiature easy to solder VCT16 package (2.6 × 2.6mm)
- Built-in thermal protection and low-voltage sensing circuits

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} , VM max		6.5	V
Output voltage	V _{OUT} max	OUT1, OUT2, OUT3, OUT4	6.5	V
Input voltage	V _{IN} max	CONT, IN	-0.3 to +6.5	V
Ground pin source current	IGND	Per channel	400	mA
Allowable power dissipation	Pd max	Mounted on a circuit board.*	700	mW
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-40 to +150	°C

^{*} Specified circuit board : 40×50×0.8mm³ : 4-layer (2S2P) glass epoxy printed circuit board

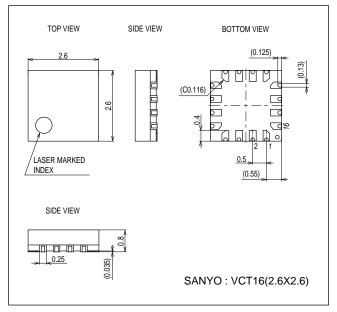
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LV8080LP

Allowable Operating Ratings at $Ta = 25^{\circ}C$

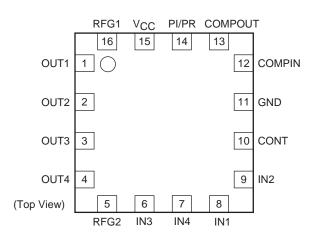
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VCC		2.5 to 6.0	V
High-level input voltage	V _{IH}	CONT, IN	0.6V _{CC} or more	V
Low-level input voltage	V_{IL}		Up to 0.2V _{CC}	V

Electrical Characteristics at Ta = 25°C, $V_{CC} = 3.0V$

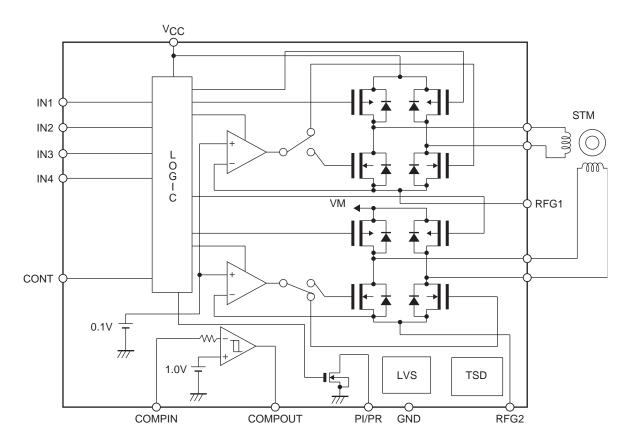

Parameter	Cumbal	Conditions		1.1-34			
Parameter	Symbol	Conditions	min	typ	max	Unit	
Current drain	Icco	EN = 0V		0.1	1	μΑ	
	I _{CCO} 1	EN = 3V		0.7	1	mA	
Output on resistance	Ron1	V _{CC} = 3.0V (High and low side total) EN = 3.0V, I _{OUT} = 100mA		2.0	3.0	Ω	
	Ron2	V _{CC} = 5.0V (High and low side total) EN = 5.0V, I _{OUT} = 100mA		1.50	2.0	Ω	
Constant-current output 1	I _{OUT} 1	Between RFG and ground : 1Ω	95	100	105	mA	
Constant-current output 2	l _{OUT} 2	Between RFG and ground : 0.5Ω (Design specification)	190	200	210	mA	
Output turn-on time	Traise	With RFG1 and RFG2 shorted to ground (Design specification)		1.3	3	μs	
Output turn-off time	Tfall	With RFG1 and RFG2 shorted to ground (Design specification)		0.25	0.65	μs	
Position detection voltage (high level)	VH			1.0	1.06	V	
Position detection voltage (low level)	VL		0.74	0.8		V	
Detection voltage hysteresis	HYS		0.165	0.18	0.195	V	
PI/PR pin current	IPI/PR				20	mA	
Input current	I _{IN}	V _{IN} = 3V		15	30	μΑ	

Note: The design specification items are design guarantees and are not measured.

Package Dimensions


unit: mm (typ)

3318



Pin Assignment

(VCT16)

Block Diagram

Constant-current calculation : $I_{OUT} = 0.1 \div RF~$ Example : When an I_{OUT} of 100mA is required, RF must be 1Ω . Usage Notes

The constant current is set by the resource RF connected between RFG and ground according to the formula shown above.

Truth Table

Input			Output			Mark			
IN1	IN2	IN3	IN4	OUT1	OUT2	OUT3	OUT4	Mode	
Low	Low	Low	Low	Off	Off	Off	Off	Standby mode	
Low	High			Low	High			Channel 1, reverse	
High	Low	-	-	High	Low	Off	Off	Channel 1, forward	
High	High			Low	Low			Channel 1, brake mode	
		Low	High			Low	High	Channel 2, reverse	
-	-	High	Low	Off	Off	High	Low	Channel 2, forward	
		High	High			Low	Low	Channel 2, brake mode	

Note: The "-" input unstable state. When off, a high-impedance state.

- The ENA goes to the standby state with a low-level input, and to the operating state with a high-level input.
- The control input switches the forward/reverse mode.

LV8080LP

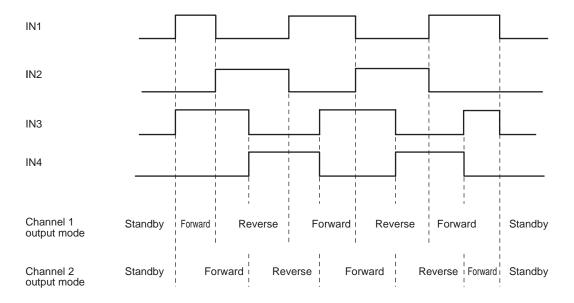
Pin Description

Pin No.	Pin Name	Description	Equivalent Circuit
1	OUT1	1-4 : Output pins	
2	OUT2	H-bridge type output pins	V _{CC}
3	OUT3	Pins 1 and 2 are paired and pins 3 and 4 are paired.	
4	OUT4		
			⊣ <u> </u>
5	RFG2	5, 16 : Current sensing resistor connection pins	
16	RFG1	Connect the current sensing resistor between these	(1) (2)
		pins and ground to detect the output currents for	
		constant current control.	
		Pin 16 corresponds to the output from pins 1 and 2 and	"
		pin 5 to the output from pins 1 and 2.	# #
			
			10kΩ
			\downarrow 10k Ω
			(5)
			0.1V #
6	IN3	Logic input pins	↑ Vcc
7	IN4		.00
8	IN1		
9	IN2		<u>↓</u>
10	CONT		↑
			6 10kΩ
			A 200kO S
			▲ 200kΩ≱
			GND
11	GND	Ground	
12	COMPIN	Photo reflector position sensing comparator input	
			*
			\bigcap 1k Ω ,
			(12)
			★
			T
			GND
13	COMPOUT	Photo reflector position sensing comparator output	1kΩ
		This pin serves as an open-collector output of the NPN	(13) + W
		transistor.	
			<u> </u>
			↑
			GND
			CIND

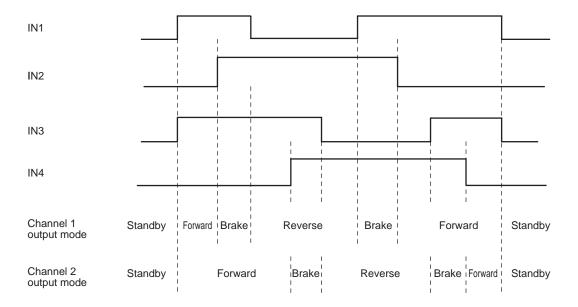
Continued on next page.

LV8080LP

Continued from preceding page Pin Name **Equivalent Circuit** Pin No. Description 14 PI/PR A switch, with NMOS open-drain output, used to turn Vcc on/off the power supply of the position sensor unit. When using this switch, connect the position sensor unit between this pin and the $V_{\mbox{\footnotesize CC}}$ pin. On/off control of this switch is accomplished by CONT (6) pin. Setting the CONT pin high turns on the switch. GND

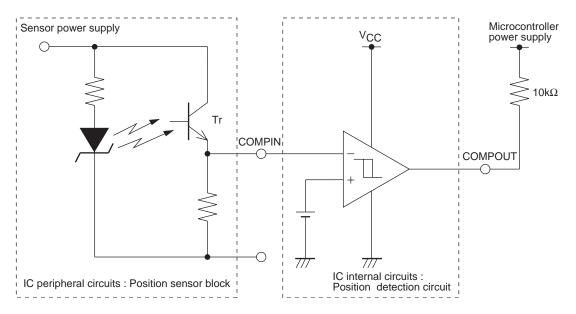

Timing Chart

Vcc

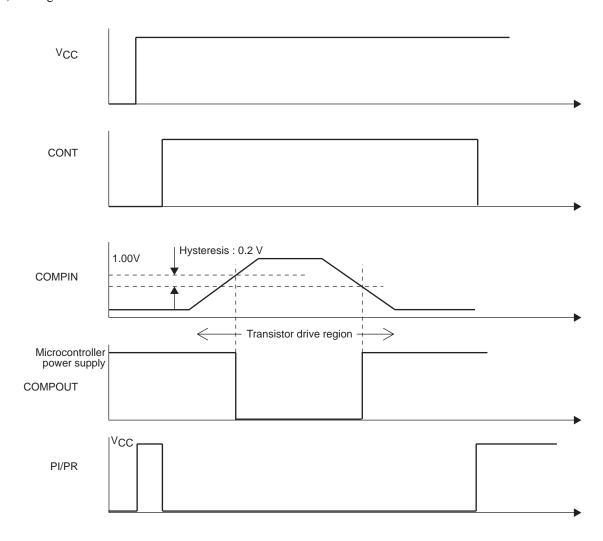

15

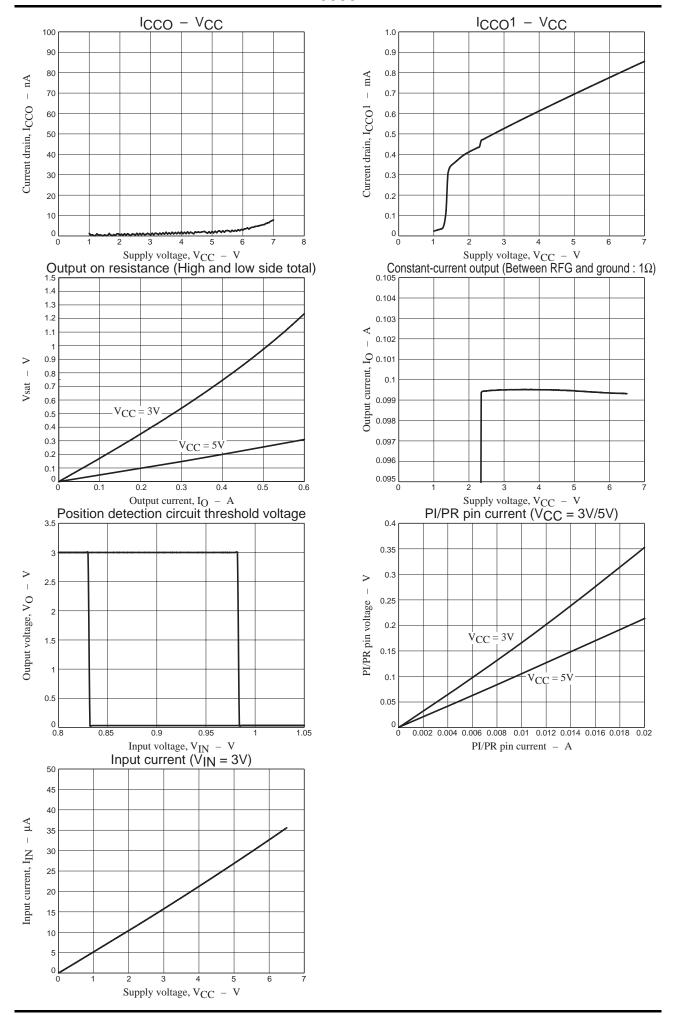
(1) Stepper motor timing chart Timing chart for 2-phase drive

Power supply pin



(2) Timing chart for 1-2 phase drive (Slow decay mode)




Photosensor Position Detection Application Circuit Example

(a) Application circuit

(b) Timing chart

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of October, 2007. Specifications and information herein are subject to change without notice.